Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,57 @@
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
import PyPDF2
|
3 |
-
from transformers import AutoTokenizer, AutoModel
|
4 |
-
import torch
|
5 |
-
import numpy as np
|
6 |
-
import faiss
|
7 |
from gtts import gTTS
|
8 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
model = AutoModel.from_pretrained(model_name)
|
14 |
-
|
15 |
-
# Function to get embeddings
|
16 |
-
def get_embedding(text):
|
17 |
-
inputs = tokenizer(text, return_tensors='pt')
|
18 |
-
with torch.no_grad():
|
19 |
-
embeddings = model(**inputs).last_hidden_state.mean(dim=1).numpy()
|
20 |
-
return embeddings
|
21 |
-
|
22 |
-
# Initialize FAISS index
|
23 |
-
embeddings_dimension = 384 # for MiniLM
|
24 |
-
index = faiss.IndexFlatL2(embeddings_dimension)
|
25 |
-
|
26 |
-
# Title of the app
|
27 |
-
st.title("Study Assistant for Grade 9")
|
28 |
-
|
29 |
-
# File uploader widget
|
30 |
-
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
index.add(embeddings) # Add embedding to the FAISS index
|
47 |
|
48 |
-
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
query = st.text_input("Type your query")
|
53 |
|
54 |
-
if
|
55 |
if query:
|
56 |
-
|
57 |
-
query_embedding = get_embedding(query)
|
58 |
-
|
59 |
-
# Search for the nearest neighbors in the FAISS index
|
60 |
-
D, I = index.search(query_embedding, k=5) # Retrieve top 5 matches
|
61 |
-
|
62 |
-
st.subheader("Top Matches:")
|
63 |
-
for idx in I[0]:
|
64 |
-
if idx < len(embeddings): # Ensure index is valid
|
65 |
-
st.write(f"Match Index: {idx}, Distance: {D[0][idx]}") # Display match details
|
66 |
|
67 |
-
#
|
68 |
-
|
69 |
-
tts = gTTS(text=response_text, lang='en')
|
70 |
tts.save("response.mp3")
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
st.success("Response generated!")
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pdfplumber
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
4 |
from gtts import gTTS
|
5 |
import os
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
# Function to extract text from a PDF
|
8 |
+
def extract_text_from_pdf(pdf_path):
|
9 |
+
text = ""
|
10 |
+
with pdfplumber.open(pdf_path) as pdf:
|
11 |
+
for page in pdf.pages:
|
12 |
+
text += page.extract_text() + "\n"
|
13 |
+
return text
|
14 |
|
15 |
+
# Load your PDF file (upload it in Colab)
|
16 |
+
pdf_path = "/content/Accounting.pdf" # Change this to your uploaded PDF file path
|
17 |
+
pdf_text = extract_text_from_pdf(pdf_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Create embeddings from the PDF text
|
20 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
21 |
+
pdf_sentences = pdf_text.split('. ') # Split text into sentences for embedding
|
22 |
+
pdf_embeddings = model.encode(pdf_sentences, convert_to_tensor=True)
|
23 |
|
24 |
+
# Function to respond to user query
|
25 |
+
def respond_to_query(query):
|
26 |
+
query_embedding = model.encode(query, convert_to_tensor=True)
|
27 |
|
28 |
+
# Find the closest sentence based on cosine similarity
|
29 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
30 |
+
similarities = cosine_similarity(query_embedding.reshape(1, -1), pdf_embeddings)
|
31 |
+
best_match_index = similarities.argmax()
|
32 |
|
33 |
+
response = pdf_sentences[best_match_index]
|
34 |
+
return response
|
|
|
35 |
|
36 |
+
# Streamlit app
|
37 |
+
st.title("Study Assistant")
|
38 |
|
39 |
+
query = st.text_input("Type your question:")
|
40 |
+
submit_button = st.button("Ask")
|
|
|
41 |
|
42 |
+
if submit_button:
|
43 |
if query:
|
44 |
+
response = respond_to_query(query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Text-to-Speech
|
47 |
+
tts = gTTS(response)
|
|
|
48 |
tts.save("response.mp3")
|
49 |
|
50 |
+
# Playing audio
|
51 |
+
os.system("mpg321 response.mp3") # Ensure mpg321 is installed in the Colab environment
|
|
|
|
|
52 |
|
53 |
+
st.write(response)
|
54 |
+
else:
|
55 |
+
st.write("Please enter a question.")
|
56 |
+
# Run the Streamlit app and expose it
|
57 |
+
!streamlit run app.py & npx localtunnel --port 8501
|