Spaces:
Runtime error
Runtime error
File size: 1,072 Bytes
2168cf5 7f68476 2168cf5 7f68476 ef26fd6 7f68476 a60235f 2168cf5 7f68476 2168cf5 d961c51 7f68476 2168cf5 ef26fd6 7f68476 d961c51 7f68476 2168cf5 ef26fd6 7f68476 ef26fd6 7f68476 ef26fd6 2168cf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
from transformers import pipeline
import gradio as gr
pretrained_sentiment = "w11wo/indonesian-roberta-base-sentiment-classifier"
pretrained_ner = "cahya/bert-base-indonesian-NER"
sentiment_pipeline = pipeline(
"sentiment-analysis",
model=pretrained_sentiment,
tokenizer=pretrained_sentiment,
return_all_scores=True
)
ner_pipeline = pipeline(
"ner",
model=pretrained_ner,
tokenizer=pretrained_ner
)
examples = [
"Masyarakat sangat kecewa dengan tragedi Kanjuruhan",
"Jokowi mengutuk kepolisian atas kerusuhan yang terjadi di Malang"
]
def sentiment_analysis(text):
output = sentiment_pipeline(text)
return {elm["label"]: elm["score"] for elm in output[0]}
def ner(text):
output = ner_pipeline(text)
return {"text": text, "entities": output}
demo = gr.Interface(
fn=[sentiment_analysis, ner],
inputs=gr.Textbox(placeholder="Enter a sentence here..."),
outputs=["label", gr.HighlightedText()],
interpretation=["default"],
examples=[examples])
if __name__ == "__main__":
demo.launch() |