import gradio as gr import supabase import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns client = supabase.create_client( "https://tmjhrfjckqnlvqnsspnr.supabase.co", "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6InRtamhyZmpja3FubHZxbnNzcG5yIiwicm9sZSI6ImFub24iLCJpYXQiOjE3MjExMjE1NTgsImV4cCI6MjAzNjY5NzU1OH0.E34R6qPWavp2uRWKinZQICgdEqRjov46VnE38F24Al8" ) def read_data(): response = client.table('Customer_purchase_dataset').select("*").execute() df = pd.DataFrame(response.data) return df df= read_data() #print(df.head) #print(df.dtypes) # Convert Gender to categorical df['Gender'] = df['Gender'].map({0: 'Female', 1: 'Male'}) # Convert LoyaltyProgram to categorical df['LoyaltyProgram'] = df['LoyaltyProgram'].map({0: 'No', 1: 'Yes'}) # Convert PurchaseStatus to categorical df['PurchaseStatus'] = df['PurchaseStatus'].map({0: 'Not Purchased', 1: 'Purchased'}) # Function to create histogram def create_histogram(column): plt.figure(figsize=(10, 6)) sns.histplot(data=df, x=column, kde=True) plt.title(f'Histogram of {column}') plt.xlabel(column) plt.ylabel('Count') return plt # Function to create scatter plot def create_scatter(x_column, y_column, hue_column): plt.figure(figsize=(10, 6)) sns.scatterplot(data=df, x=x_column, y=y_column, hue=hue_column) plt.title(f'{x_column} vs {y_column} (colored by {hue_column})') plt.xlabel(x_column) plt.ylabel(y_column) return plt # Function to create box plot def create_boxplot(x_column, y_column): plt.figure(figsize=(10, 6)) sns.boxplot(data=df, x=x_column, y=y_column) plt.title(f'Box Plot of {y_column} by {x_column}') plt.xlabel(x_column) plt.ylabel(y_column) return plt # Function to create bar plot def create_barplot(x_column, y_column): plt.figure(figsize=(10, 6)) sns.barplot(data=df, x=x_column, y=y_column) plt.title(f'Bar Plot of {y_column} by {x_column}') plt.xlabel(x_column) plt.ylabel(y_column) plt.xticks(rotation=45) return plt # Gradio interface def visualize(plot_type, x_column, y_column, hue_column): if plot_type == "Histogram": return create_histogram(x_column) elif plot_type == "Scatter Plot": return create_scatter(x_column, y_column, hue_column) elif plot_type == "Box Plot": return create_boxplot(x_column, y_column) elif plot_type == "Bar Plot": return create_barplot(x_column, y_column) # Create Gradio interface iface = gr.Interface( fn=visualize, inputs=[ gr.Dropdown(["Histogram", "Scatter Plot", "Box Plot", "Bar Plot"], label="Plot Type"), gr.Dropdown(df.columns.tolist(), label="X-axis"), gr.Dropdown(df.columns.tolist(), label="Y-axis"), gr.Dropdown(df.columns.tolist(), label="Hue (for Scatter Plot)") ], outputs="plot", title="Customer Purchase Data Visualization Dashboard", description="Explore the customer purchase dataset through various visualizations." ) # Launch the interface iface.launch()