Spaces:
Runtime error
Runtime error
File size: 3,257 Bytes
b422128 7a51044 b422128 c310511 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import supabase
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr
import io
client = supabase.create_client(
"https://uddbzgupnpujsabrgbyk.supabase.co",
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6InVkZGJ6Z3VwbnB1anNhYnJnYnlrIiwicm9sZSI6InNlcnZpY2Vfcm9sZSIsImlhdCI6MTcxODgxOTE3NywiZXhwIjoyMDM0Mzk1MTc3fQ.OH-NJ64dHhr0WPMZU05TsSBfRkoiX29W_cFHYqnN0us"
)
def read_data():
response = client.table('Plant Growth Analysis').select("*").execute()
df = pd.DataFrame(response.data)
return df
df = read_data()
#df.head()
# Convert LoyaltyProgram to categorical
#df['Growth_Milestone'] = df['Growth_Milestone'].map({0: 'No', 1: 'Yes'})
# Function to create histogram
def create_histogram(column):
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x=column, kde=True)
plt.title(f'Histogram of {column}')
plt.xlabel(column)
plt.ylabel('Count')
return plt
# Function to create scatter plot
def create_scatter(x_column, y_column, hue_column):
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df, x=x_column, y=y_column, hue=hue_column)
plt.title(f'{x_column} vs {y_column} (colored by {hue_column})')
plt.xlabel(x_column)
plt.ylabel(y_column)
return plt
# Function to create box plot
def create_boxplot(x_column, y_column):
plt.figure(figsize=(10, 6))
sns.boxplot(data=df, x=x_column, y=y_column)
plt.title(f'Box Plot of {y_column} by {x_column}')
plt.xlabel(x_column)
plt.ylabel(y_column)
return plt
# Function to create bar plot
def create_barplot(x_column, y_column):
plt.figure(figsize=(10, 6))
sns.barplot(data=df, x=x_column, y=y_column)
plt.title(f'Bar Plot of {y_column} by {x_column}')
plt.xlabel(x_column)
plt.ylabel(y_column)
plt.xticks(rotation=45)
return plt
#Function to create Line Plot
def create_lineplot(x_column, y_column):
plt.figure(figsize=(10, 6))
sns.lineplot(data=df,x=x_column, y=y_column)
plt.title(f'Line Plot of {y_column} vs {x_column}')
plt.xlabel(x_column)
plt.ylabel(y_column)
return plt
# Gradio interface
def visualize(plot_type, x_column, y_column, hue_column):
if plot_type == "Histogram":
return create_histogram(x_column)
elif plot_type == "Scatter Plot":
return create_scatter(x_column, y_column, hue_column)
elif plot_type == "Box Plot":
return create_boxplot(x_column, y_column)
elif plot_type == "Bar Plot":
return create_barplot(x_column, y_column)
elif plot_type == "Line Plot":
return create_lineplot(x_column, y_column)
# Create Gradio interface
iface = gr.Interface(
fn=visualize,
inputs=[
gr.Dropdown(["Histogram", "Scatter Plot", "Box Plot", "Bar Plot","Line Plot"], label="Plot Type"),
gr.Dropdown(df.columns.tolist(), label="X-axis"),
gr.Dropdown(df.columns.tolist(), label="Y-axis"),
gr.Dropdown(df.columns.tolist(), label="Hue (for Scatter Plot/Line Plot)")
],
outputs="plot",
title="Plant Growth Data Visualization Dashboard",
description="This dashboard displays various visualizations of the plant growth dataset.",
)
# Launch the interface
iface.launch()
|