import gradio as gr import pandas as pd import numpy as np import requests from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration from stable_baselines3 import PPO import gym # Ensure gym is imported from gym import spaces from stable_baselines3.common.vec_env import DummyVecEnv import plotly.graph_objects as go # 1. Set up Groq API Integration GROQ_API_KEY = "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" # Replace with your API key groq_api_url = "https://api.groq.com/v1/traffic/optimize" # Replace with correct endpoint headers = { 'Authorization': f'Bearer {GROQ_API_KEY}', } # Load Traffic Data from CSV (Replace with uploaded file handling for Gradio) def load_traffic_data(file_path): data = pd.read_csv(file_path) return data # 3. Function to interact with Groq API to get traffic optimization strategies def get_optimization_strategy(traffic_data): traffic_data = [int(x) if isinstance(x, np.int64) else x for x in traffic_data] response = requests.post(groq_api_url, json={'traffic_data': traffic_data}, headers=headers) if response.status_code == 200: optimization_strategy = response.json() return optimization_strategy else: return f"Error: {response.status_code}, {response.text}" # 4. Create a Custom Traffic Environment for RL Simulation class TrafficEnv(gym.Env): def __init__(self, traffic_data): super(TrafficEnv, self).__init__() self.action_space = spaces.Discrete(3) # 3 possible actions self.observation_space = spaces.Box(low=0, high=50, shape=(5,), dtype=np.float32) self.current_state = np.zeros(5) # Start with zero traffic data self.traffic_data = traffic_data def reset(self): self.current_state = np.array(self.traffic_data.iloc[0, 3:7], dtype=np.float32) # Use first row for starting state return self.current_state def step(self, action): if action == 0: # Decrease traffic self.current_state = self.current_state - np.random.randint(1, 5, size=self.current_state.shape) elif action == 1: # No change self.current_state = self.current_state elif action == 2: # Increase traffic self.current_state = self.current_state + np.random.randint(1, 5, size=self.current_state.shape) self.current_state = np.clip(self.current_state, 0, None) reward = -np.sum(self.current_state) # Minimize traffic (negative sum as reward) done = np.sum(self.current_state) < 50 return self.current_state, reward, done, {} def create_environment(traffic_data): return DummyVecEnv([lambda: TrafficEnv(traffic_data)]) # Visualize Traffic Flow using Plotly def visualize_traffic_flow(traffic_data): locations = ['CarCount', 'BikeCount', 'BusCount', 'TruckCount'] traffic_flow = traffic_data.iloc[0, 3:7] # Use first row of traffic counts fig = go.Figure(data=[go.Bar(x=locations, y=traffic_flow)]) fig.update_layout(title='Real-Time Traffic Flow', xaxis_title='Location', yaxis_title='Traffic Volume') return fig # RAG-based Optimization Strategy using Hugging Face Transformers def rag_based_optimization(query): tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq") inputs = tokenizer(query, return_tensors="pt") generated_ids = model.generate(input_ids=inputs['input_ids']) generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) return generated_text # Gradio Interface for the App def optimize_traffic(traffic_file, query): # Load Traffic Data from uploaded file traffic_data = load_traffic_data(traffic_file.name) # Get optimization strategy from Groq API optimization_strategy = get_optimization_strategy(traffic_data.iloc[0, 3:7].values.tolist()) # Visualize traffic flow traffic_fig = visualize_traffic_flow(traffic_data) # Get RAG-based optimization strategy rag_strategy = rag_based_optimization(query) return optimization_strategy, traffic_fig, rag_strategy # Create Gradio Interface iface = gr.Interface( fn=optimize_traffic, inputs=[ gr.File(label="Upload Traffic Data CSV"), gr.Textbox(label="Enter Optimization Query", value="Optimize traffic flow for downtown area.") ], outputs=[ gr.JSON(label="Optimization Strategy from Groq API"), gr.Plot(label="Traffic Flow Visualization"), gr.Textbox(label="RAG-based Optimization Strategy") ], live=True, title="Traffic Optimization App", description="This app optimizes traffic flow using RL, Groq API, and RAG model-based optimization strategies." ) if __name__ == "__main__": iface.launch()