import cv2 from huggingface_hub import hf_hub_download from ultralytics import YOLO from supervision import Detections from PIL import Image import torch import numpy as np import gradio as gr # 함수 정의: 사각형 그리고 정확도 표시 def draw_rect_with_conf(image, detections): for detection in detections: # 탐지된 객체의 경계 상자 좌표 (NumPy 배열)와 신뢰도 점수 box, _, conf, _, _ = detection x1, y1, x2, y2 = box.astype(int) # 사각형 그리기 cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) # 신뢰도 표시 cv2.putText(image, f'Accuracy: {conf:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) return image def detect_faces(input_img): # download model model_path = hf_hub_download( repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt" ) # load model model = YOLO(model_path) # 이미지를 YOLO 모델 입력 형식으로 변환 image_cv = cv2.cvtColor(np.array(input_img), cv2.COLOR_RGB2BGR) # 얼굴 탐지 output = model(input_img) results = Detections.from_ultralytics(output[0]) # 탐지 결과 그리기 drawn_image = draw_rect_with_conf(image_cv, results) # OpenCV 이미지를 PIL 이미지로 변환 drawn_image_pil = Image.fromarray(cv2.cvtColor(drawn_image, cv2.COLOR_BGR2RGB)) return drawn_image_pil def gradio_interface(input_img): # 얼굴 탐지 함수 호출 detected_img = detect_faces(input_img) return detected_img # Gradio 인터페이스 설정 demo = gr.Interface(fn=gradio_interface, inputs=gr.Image(type="pil"), outputs="image") if __name__ == "__main__": demo.launch()