manikanta2026
commited on
Commit
·
e3c2886
1
Parent(s):
25ccec5
changes1
Browse files
app.py
CHANGED
@@ -1,9 +1,13 @@
|
|
|
|
1 |
import numpy as np
|
2 |
import librosa
|
3 |
import pickle
|
4 |
import tensorflow as tf
|
5 |
import gradio as gr
|
6 |
|
|
|
|
|
|
|
7 |
# Load model and label encoder
|
8 |
model = tf.keras.models.load_model("ann_new_emotion_recognition_model.h5", compile=False)
|
9 |
with open("new_label_encoder.pkl", "rb") as f:
|
@@ -41,8 +45,9 @@ def predict_emotion(audio_file):
|
|
41 |
predicted_class = np.argmax(predictions[0])
|
42 |
predicted_emotion = label_encoder.inverse_transform([predicted_class])[0]
|
43 |
|
|
|
44 |
emotion_probabilities = {
|
45 |
-
label_encoder.inverse_transform([i])[0]:
|
46 |
for i, pred in enumerate(predictions[0])
|
47 |
}
|
48 |
|
@@ -52,7 +57,10 @@ def predict_emotion(audio_file):
|
|
52 |
iface = gr.Interface(
|
53 |
fn=predict_emotion,
|
54 |
inputs=gr.Audio(type="filepath"),
|
55 |
-
outputs=[
|
|
|
|
|
|
|
56 |
title="🎤 Emotion Recognition from Audio",
|
57 |
description="Upload or record audio to identify the emotion being expressed."
|
58 |
)
|
|
|
1 |
+
import os
|
2 |
import numpy as np
|
3 |
import librosa
|
4 |
import pickle
|
5 |
import tensorflow as tf
|
6 |
import gradio as gr
|
7 |
|
8 |
+
# Optional: Suppress TensorFlow logging for cleaner output
|
9 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
10 |
+
|
11 |
# Load model and label encoder
|
12 |
model = tf.keras.models.load_model("ann_new_emotion_recognition_model.h5", compile=False)
|
13 |
with open("new_label_encoder.pkl", "rb") as f:
|
|
|
45 |
predicted_class = np.argmax(predictions[0])
|
46 |
predicted_emotion = label_encoder.inverse_transform([predicted_class])[0]
|
47 |
|
48 |
+
# Output confidences as floats (0-100), not strings
|
49 |
emotion_probabilities = {
|
50 |
+
label_encoder.inverse_transform([i])[0]: float(pred * 100)
|
51 |
for i, pred in enumerate(predictions[0])
|
52 |
}
|
53 |
|
|
|
57 |
iface = gr.Interface(
|
58 |
fn=predict_emotion,
|
59 |
inputs=gr.Audio(type="filepath"),
|
60 |
+
outputs=[
|
61 |
+
gr.Text(label="Predicted Emotion"),
|
62 |
+
gr.Label(label="Emotion Probabilities")
|
63 |
+
],
|
64 |
title="🎤 Emotion Recognition from Audio",
|
65 |
description="Upload or record audio to identify the emotion being expressed."
|
66 |
)
|