manikanta2026
commited on
Commit
·
eba92d1
1
Parent(s):
e042967
initial
Browse files- ann_new_emotion_recognition_model.h5 +3 -0
- app.py +60 -0
- new_label_encoder (1).pkl +3 -0
- requirements.txt +5 -0
ann_new_emotion_recognition_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e1979b8299de6a4e94fdf2a847ea78de60a778386f8f0745068c5e01c80fc9b
|
3 |
+
size 34282072
|
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import librosa
|
3 |
+
import pickle
|
4 |
+
import tensorflow as tf
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Load model and label encoder
|
8 |
+
model = tf.keras.models.load_model("ann_new_emotion_recognition_model.h5", compile=False)
|
9 |
+
with open("new_label_encoder.pkl", "rb") as f:
|
10 |
+
label_encoder = pickle.load(f)
|
11 |
+
|
12 |
+
def extract_features(audio, sr, max_len=40):
|
13 |
+
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=20)
|
14 |
+
mfccs = np.mean(mfccs.T, axis=0)
|
15 |
+
chroma = librosa.feature.chroma_stft(y=audio, sr=sr)
|
16 |
+
chroma = np.mean(chroma.T, axis=0)
|
17 |
+
contrast = librosa.feature.spectral_contrast(y=audio, sr=sr)
|
18 |
+
contrast = np.mean(contrast.T, axis=0)
|
19 |
+
zcr = librosa.feature.zero_crossing_rate(y=audio)
|
20 |
+
zcr = np.mean(zcr.T, axis=0)
|
21 |
+
centroid = librosa.feature.spectral_centroid(y=audio, sr=sr)
|
22 |
+
centroid = np.mean(centroid.T, axis=0)
|
23 |
+
rolloff = librosa.feature.spectral_rolloff(y=audio, sr=sr)
|
24 |
+
rolloff = np.mean(rolloff.T, axis=0)
|
25 |
+
rms = librosa.feature.rms(y=audio)
|
26 |
+
rms = np.mean(rms.T, axis=0)
|
27 |
+
|
28 |
+
features = np.concatenate([mfccs, chroma, contrast, zcr, centroid, rolloff, rms])
|
29 |
+
if len(features) < max_len:
|
30 |
+
features = np.pad(features, (0, max_len - len(features)), mode='constant')
|
31 |
+
else:
|
32 |
+
features = features[:max_len]
|
33 |
+
return features
|
34 |
+
|
35 |
+
def predict_emotion(audio_file):
|
36 |
+
audio_np, sr = librosa.load(audio_file, sr=None)
|
37 |
+
features = extract_features(audio_np, sr)
|
38 |
+
features = np.expand_dims(features, axis=0)
|
39 |
+
|
40 |
+
predictions = model.predict(features, verbose=0)
|
41 |
+
predicted_class = np.argmax(predictions[0])
|
42 |
+
predicted_emotion = label_encoder.inverse_transform([predicted_class])[0]
|
43 |
+
|
44 |
+
emotion_probabilities = {
|
45 |
+
label_encoder.inverse_transform([i])[0]: f"{pred * 100:.2f}%"
|
46 |
+
for i, pred in enumerate(predictions[0])
|
47 |
+
}
|
48 |
+
|
49 |
+
return predicted_emotion, emotion_probabilities
|
50 |
+
|
51 |
+
# Gradio interface
|
52 |
+
iface = gr.Interface(
|
53 |
+
fn=predict_emotion,
|
54 |
+
inputs=gr.Audio(type="filepath"),
|
55 |
+
outputs=["text", "label"],
|
56 |
+
title="🎤 Emotion Recognition from Audio",
|
57 |
+
description="Upload or record audio to identify the emotion being expressed."
|
58 |
+
)
|
59 |
+
|
60 |
+
iface.launch()
|
new_label_encoder (1).pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0131c5626b3df306fd6dfef89cd8a6b41609c25f378ffe40202c0f84e6f30054
|
3 |
+
size 403
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
librosa
|
3 |
+
gradio
|
4 |
+
numpy
|
5 |
+
scikit-learn
|