Spaces:
Building
Building
File size: 11,723 Bytes
4a8ac8b 7e5261e 14d257f 7e5261e 6cf979c 983867e f0b6227 6cf979c f0b6227 983867e 6cf979c f0b6227 983867e 6cf979c 06bea5a 7e5261e 4a8ac8b db07900 4a8ac8b 7ea7941 4a8ac8b 8276bc3 7ea7941 4a8ac8b 8c8d4ad 7ea7941 4a8ac8b 8c8d4ad 4a8ac8b 8276bc3 4a8ac8b 7ea7941 8c8d4ad 7ea7941 666a2c5 4a8ac8b f105330 7ea7941 4e7357a 06bea5a 983867e 14d257f 983867e e98ae78 983867e 14d257f 983867e 06bea5a 48191bb 6069913 48191bb 983867e 06bea5a 983867e e98ae78 983867e 14d257f 983867e e98ae78 4a8ac8b 14d257f 7ea7941 4a8ac8b 7ea7941 f694778 7ea7941 2832f32 7ea7941 210abfd 7ea7941 983867e 7ea7941 4a8ac8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import gradio as gr
from huggingface_hub import InferenceClient
import json
import uuid
from PIL import Image
from bs4 import BeautifulSoup
import requests
import random
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
from threading import Thread
import re
import time
import torch
import cv2
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf"
processor = LlavaProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(model_id)
model.to("cpu")
def llava(message, history):
if message["files"]:
image = message["files"][0]
else:
for hist in history:
if type(hist[0])==tuple:
image = hist[0][0]
txt = message["text"]
gr.Info("Analyzing image")
image = Image.open(image).convert("RGB")
prompt = f"<|im_start|>user <image>\n{txt}<|im_end|><|im_start|>assistant"
inputs = processor(prompt, image, return_tensors="pt")
return inputs
def extract_text_from_webpage(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for tag in soup(["script", "style", "header", "footer"]):
tag.extract()
return soup.get_text(strip=True)
def search(query):
term = query
start = 0
all_results = []
max_chars_per_page = 8000
with requests.Session() as session:
resp = session.get(
url="https://www.google.com/search",
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
params={"q": term, "num": 3, "udm": 14},
timeout=5,
verify=None,
)
resp.raise_for_status()
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
for result in result_block:
link = result.find("a", href=True)
link = link["href"]
try:
webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5, verify=False)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page]
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException:
all_results.append({"link": link, "text": None})
return all_results
# Initialize inference clients for different models
client_gemma = InferenceClient("google/gemma-1.1-7b-it")
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
# Define the main chat function
def respond(message, history):
func_caller = []
user_prompt = message
# Handle image processing
if message["files"]:
inputs = llava(message, history)
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
else:
functions_metadata = [
{"type": "function", "function": {"name": "web_search", "description": "Search query on google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}},
{"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
{"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}, "number_of_image": {"type": "integer", "description": "number of images to generate"}}, "required": ["query"]}}},
{"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
]
message_text = message["text"]
func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text}'})
response = client_gemma.chat_completion(func_caller, max_tokens=150)
response = str(response)
try:
response = response[int(response.find("{")):int(response.index("</"))]
except:
print("A error occured")
response = response.replace("\\n", "")
response = response.replace("\\'", "'")
response = response.replace('\\"', '"')
print(f"\n{response}")
func_caller.append({"role": "assistant", "content": f"<functioncall>{response}</functioncall>"})
try:
json_data = json.loads(str(response))
if json_data["name"] == "web_search":
query = json_data["arguments"]["query"]
gr.Info("Searching Web")
web_results = search(query)
gr.Info("Extracting relevant Info")
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
messages = f"<|im_start|>system\nYou are OpenCHAT mini a helpful assistant made by KingNish. You are provided with WEB results from which you can find informations to answer users query in Structured and More better way. You do not say Unnecesarry things Only say thing which is important and relevant. You also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|im_end|>"
for msg in history:
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
messages+=f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "<|im_end|>":
output += response.token.text
yield output
elif json_data["name"] == "image_generation":
query = json_data["arguments"]["query"]
gr.Info("Generating Image, Please wait 10 sec...")
client = InferenceClient("stabilityai/stable-diffusion-3-medium-diffusers")
seed = random.randint(0,999999)
image = client.text_to_image(message_text, negative_prompt=f"{seed}")
yield gr.Image(image)
gr.Info("We are going to mor upgrade image generator in next update")
elif json_data["name"] == "image_qna":
inputs = llava(message, history)
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
else:
messages = f"<|start_header_id|>system\nYou are OpenCHAT mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
for msg in history:
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
messages+=f"\n<|start_header_id|>user\n{message_text}<|end_header_id|>\n<|start_header_id|>assistant\n"
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "<|eot_id|>":
output += response.token.text
yield output
except:
messages = f"<|start_header_id|>system\nYou are OpenCHAT mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
for msg in history:
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
messages+=f"\n<|start_header_id|>user\n{message_text}<|end_header_id|>\n<|start_header_id|>assistant\n"
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "<|eot_id|>":
output += response.token.text
yield output
# Create the Gradio interface
demo = gr.ChatInterface(
fn=respond,
chatbot=gr.Chatbot(show_copy_button=True, likeable=True, layout="panel"),
description ="# OpenGPT 4o mini\n ### You can engage in chat, generate images, perform web searches, and Q&A with images.",
textbox=gr.MultimodalTextbox(),
multimodal=True,
concurrency_limit=200,
examples=[
{"text": "Hy, who are you?",},
{"text": "What's the current price of Bitcoin",},
{"text": "Search and Tell me what's the release date of llama 3 400b",},
{"text": "Create A Beautiful image of Effiel Tower at Night",},
{"text": "Write me a Python function to calculate the first 10 digits of the fibonacci sequence.",},
{"text": "What's the colour of car in given image", "files": ["./car1.png"]},
{"text": "Read what's written on paper", "files": ["./paper_with_text.png"]},
],
cache_examples=False,
)
demo.launch() |