File size: 11,290 Bytes
4a8ac8b
 
 
 
 
 
 
 
 
 
 
7ea7941
53f9e12
8ec253e
53f9e12
4a8ac8b
 
 
db07900
4a8ac8b
 
 
 
7ea7941
4a8ac8b
 
 
7ea7941
 
 
4a8ac8b
8c8d4ad
7ea7941
 
 
4a8ac8b
 
 
 
 
 
 
 
8c8d4ad
4a8ac8b
 
 
 
 
 
 
 
 
7ea7941
8c8d4ad
7ea7941
 
611f01a
7ea7941
 
 
 
 
4a8ac8b
7ea7941
4a8ac8b
 
7ea7941
1ad9f62
 
53f9e12
1ad9f62
4a8ac8b
 
7ea7941
 
4a8ac8b
7ea7941
 
 
 
4a8ac8b
 
 
 
7ea7941
 
4a8ac8b
7ea7941
8c8d4ad
4a8ac8b
 
53d00bc
4a8ac8b
 
 
 
 
 
7ea7941
ae0b491
611f01a
7ea7941
4a8ac8b
 
 
 
 
 
 
 
 
 
 
 
 
7ea7941
4a8ac8b
 
 
 
 
 
 
 
 
d08e48e
cbab673
4a8ac8b
 
a7f7acc
 
 
 
 
 
7ea7941
a7f7acc
 
 
 
 
4a8ac8b
 
 
 
 
 
7ea7941
4a8ac8b
 
 
 
 
 
 
 
 
 
 
7ea7941
4a8ac8b
 
 
 
 
 
7ea7941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a8ac8b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import gradio as gr
from huggingface_hub import InferenceClient
import json
import re
import uuid
from PIL import Image
from bs4 import BeautifulSoup
import requests
import random
from gradio_client import Client, file

# Define functions for image captioning, web search, and text extraction
def generate_caption_instructblip(image_path, question):
    client = Client("hysts/image-captioning-with-blip")
    return client.predict(file(image_path), f"{question}", api_name="/caption")

def extract_text_from_webpage(html_content):
    soup = BeautifulSoup(html_content, 'html.parser')
    for tag in soup(["script", "style", "header", "footer"]):
        tag.extract()
    return soup.get_text(strip=True)

def search(query):
    term = query
    print(f"Running web search for query: {term}")
    start = 0
    all_results = []
    max_chars_per_page = 8000  
    with requests.Session() as session:
        resp = session.get(
            url="https://www.google.com/search",
            headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
            params={"q": term, "num": 3, "udm": 14},
            timeout=5,
            verify=None,
        )
        resp.raise_for_status()
        soup = BeautifulSoup(resp.text, "html.parser")
        result_block = soup.find_all("div", attrs={"class": "g"})
        for result in result_block:
            link = result.find("a", href=True)
            link = link["href"]
            try:
                webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5, verify=False)
                webpage.raise_for_status()
                visible_text = extract_text_from_webpage(webpage.text)
                if len(visible_text) > max_chars_per_page:
                    visible_text = visible_text[:max_chars_per_page]
                all_results.append({"link": link, "text": visible_text})
            except requests.exceptions.RequestException as e:
                all_results.append({"link": link, "text": None})
    return all_results

# Initialize inference clients for different models
client_gemma = InferenceClient("google/gemma-1.1-7b-it")
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
messages = []

# Define the main chat function
def respond(message, history):
    global messages # Make messages global for persistent storage 
    vqa = ""

    # Handle image processing
    if message["files"]:
        try:
            for image in message["files"]:
                vqa += "[CAPTION of IMAGE]  "
                gr.Info("Analyzing image")
                vqa += generate_caption_instructblip(image, message["text"])
                print(vqa)
        except:
            vqa = ""

    # Define function metadata for user interface
    functions_metadata = [
        {"type": "function", "function": {"name": "web_search", "description": "Search query on google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}},
        {"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
        {"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}, "number_of_image": {"type": "integer", "description": "number of images to generate"}}, "required": ["query"]}}},
        {"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
    ]

    message_text = message["text"]

    # Append user messages and system instructions to the messages list
    messages.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }}  </functioncall>  [USER] {message} {vqa}'})

    # Call the LLM for response generation
    response = client_gemma.chat_completion(messages, max_tokens=150)
    response = str(response)
    try:
        response = response[int(response.find("{")):int(response.index("</"))]
    except:
        print("A error occured")
    response = response.replace("\\n", "")
    response = response.replace("\\'", "'")
    response = response.replace('\\"', '"')
    print(f"\n{response}")

    messages.append({"role": "assistant", "content": f"<functioncall>{response}</functioncall>"})

    # Process and return the response based on the function call
    try:
        json_data = json.loads(str(response))
        if json_data["name"] == "web_search":
            query = json_data["arguments"]["query"]
            gr.Info("Searching Web")
            web_results = search(query)
            gr.Info("Extracting relevant Info")
            web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
            messages = f"<|im_start|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You are provided with WEB results from which you can find informations to answer users query in Structured and More better way. You do not say Unnecesarry things Only say thing which is important and relevant. You also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|im_end|>"
            for msg in history:
                messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
                messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
            messages+=f"\n<|im_start|>user\n{message_text} {vqa}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
            stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
            output = ""
            for response in stream:
                if not response.token.text == "<|im_end|>":
                    output += response.token.text
                    yield output
        elif json_data["name"] == "image_generation":
            query = json_data["arguments"]["query"]
            gr.Info("Generating Image, Please wait...")
            seed = random.randint(1, 99999)
            query = query.replace(" ", "%20")
            image = f"![](https://image.pollinations.ai/prompt/{query}?seed={seed})"
            yield image
            gr.Info("We are going to Update Our Image Generation Engine to more powerful ones in Next Update. ThankYou")
        elif json_data["name"] == "image_qna":
            messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You are provide with both images and captions and Your task is to answer of user with help of caption provided. Answer in human style and show emotions.<|end_header_id|>"
            for msg in history:
                messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
                messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
            messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
            stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
            output = ""
            for response in stream:
                if not response.token.text == "<|eot_id|>":
                    output += response.token.text
                    yield output
        else:
            messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
            for msg in history:
                messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
                messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
            messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
            stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
            output = ""
            for response in stream:
                if not response.token.text == "<|eot_id|>":
                    output += response.token.text
                    yield output
    except:
        messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
        for msg in history:
            messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
            messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
        messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
        stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
        output = ""
        for response in stream:
            if not response.token.text == "<|eot_id|>":
                output += response.token.text
                yield output

# Create the Gradio interface
demo = gr.ChatInterface(
    fn=respond,
    chatbot=gr.Chatbot(show_copy_button=True, likeable=True, layout="panel"),
    title="OpenGPT 4o mini",
    textbox=gr.MultimodalTextbox(),
    multimodal=True,
    concurrency_limit=20,
    examples=[
        {"text": "Hy, who are you?",},
        {"text": "What's the current price of Bitcoin",},
        {"text": "Create A Beautiful image of Effiel Tower at Night",},
        {"text": "Write me a Python function to calculate the first 10 digits of the fibonacci sequence.",},
        {"text": "What's the colour of both of Car in given image", "files": ["./car1.png", "./car2.png"]},
    ],
    cache_examples=False,
)
demo.launch()