Spaces:
Building
Building
File size: 11,290 Bytes
4a8ac8b 7ea7941 53f9e12 8ec253e 53f9e12 4a8ac8b db07900 4a8ac8b 7ea7941 4a8ac8b 7ea7941 4a8ac8b 8c8d4ad 7ea7941 4a8ac8b 8c8d4ad 4a8ac8b 7ea7941 8c8d4ad 7ea7941 611f01a 7ea7941 4a8ac8b 7ea7941 4a8ac8b 7ea7941 1ad9f62 53f9e12 1ad9f62 4a8ac8b 7ea7941 4a8ac8b 7ea7941 4a8ac8b 7ea7941 4a8ac8b 7ea7941 8c8d4ad 4a8ac8b 53d00bc 4a8ac8b 7ea7941 ae0b491 611f01a 7ea7941 4a8ac8b 7ea7941 4a8ac8b d08e48e cbab673 4a8ac8b a7f7acc 7ea7941 a7f7acc 4a8ac8b 7ea7941 4a8ac8b 7ea7941 4a8ac8b 7ea7941 4a8ac8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
from huggingface_hub import InferenceClient
import json
import re
import uuid
from PIL import Image
from bs4 import BeautifulSoup
import requests
import random
from gradio_client import Client, file
# Define functions for image captioning, web search, and text extraction
def generate_caption_instructblip(image_path, question):
client = Client("hysts/image-captioning-with-blip")
return client.predict(file(image_path), f"{question}", api_name="/caption")
def extract_text_from_webpage(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for tag in soup(["script", "style", "header", "footer"]):
tag.extract()
return soup.get_text(strip=True)
def search(query):
term = query
print(f"Running web search for query: {term}")
start = 0
all_results = []
max_chars_per_page = 8000
with requests.Session() as session:
resp = session.get(
url="https://www.google.com/search",
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
params={"q": term, "num": 3, "udm": 14},
timeout=5,
verify=None,
)
resp.raise_for_status()
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
for result in result_block:
link = result.find("a", href=True)
link = link["href"]
try:
webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5, verify=False)
webpage.raise_for_status()
visible_text = extract_text_from_webpage(webpage.text)
if len(visible_text) > max_chars_per_page:
visible_text = visible_text[:max_chars_per_page]
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException as e:
all_results.append({"link": link, "text": None})
return all_results
# Initialize inference clients for different models
client_gemma = InferenceClient("google/gemma-1.1-7b-it")
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
messages = []
# Define the main chat function
def respond(message, history):
global messages # Make messages global for persistent storage
vqa = ""
# Handle image processing
if message["files"]:
try:
for image in message["files"]:
vqa += "[CAPTION of IMAGE] "
gr.Info("Analyzing image")
vqa += generate_caption_instructblip(image, message["text"])
print(vqa)
except:
vqa = ""
# Define function metadata for user interface
functions_metadata = [
{"type": "function", "function": {"name": "web_search", "description": "Search query on google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}},
{"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
{"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}, "number_of_image": {"type": "integer", "description": "number of images to generate"}}, "required": ["query"]}}},
{"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
]
message_text = message["text"]
# Append user messages and system instructions to the messages list
messages.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message} {vqa}'})
# Call the LLM for response generation
response = client_gemma.chat_completion(messages, max_tokens=150)
response = str(response)
try:
response = response[int(response.find("{")):int(response.index("</"))]
except:
print("A error occured")
response = response.replace("\\n", "")
response = response.replace("\\'", "'")
response = response.replace('\\"', '"')
print(f"\n{response}")
messages.append({"role": "assistant", "content": f"<functioncall>{response}</functioncall>"})
# Process and return the response based on the function call
try:
json_data = json.loads(str(response))
if json_data["name"] == "web_search":
query = json_data["arguments"]["query"]
gr.Info("Searching Web")
web_results = search(query)
gr.Info("Extracting relevant Info")
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
messages = f"<|im_start|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You are provided with WEB results from which you can find informations to answer users query in Structured and More better way. You do not say Unnecesarry things Only say thing which is important and relevant. You also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|im_end|>"
for msg in history:
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
messages+=f"\n<|im_start|>user\n{message_text} {vqa}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "<|im_end|>":
output += response.token.text
yield output
elif json_data["name"] == "image_generation":
query = json_data["arguments"]["query"]
gr.Info("Generating Image, Please wait...")
seed = random.randint(1, 99999)
query = query.replace(" ", "%20")
image = f"![](https://image.pollinations.ai/prompt/{query}?seed={seed})"
yield image
gr.Info("We are going to Update Our Image Generation Engine to more powerful ones in Next Update. ThankYou")
elif json_data["name"] == "image_qna":
messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You are provide with both images and captions and Your task is to answer of user with help of caption provided. Answer in human style and show emotions.<|end_header_id|>"
for msg in history:
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "<|eot_id|>":
output += response.token.text
yield output
else:
messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
for msg in history:
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "<|eot_id|>":
output += response.token.text
yield output
except:
messages = f"<|start_header_id|>system\nYou are OpenGPT 4o mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions.<|end_header_id|>"
for msg in history:
messages += f"\n<|start_header_id|>user\n{str(msg[0])}<|end_header_id|>"
messages += f"\n<|start_header_id|>assistant\n{str(msg[1])}<|end_header_id|>"
messages+=f"\n<|start_header_id|>user\n{message_text} {vqa}<|end_header_id|>\n<|start_header_id|>assistant\n"
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "<|eot_id|>":
output += response.token.text
yield output
# Create the Gradio interface
demo = gr.ChatInterface(
fn=respond,
chatbot=gr.Chatbot(show_copy_button=True, likeable=True, layout="panel"),
title="OpenGPT 4o mini",
textbox=gr.MultimodalTextbox(),
multimodal=True,
concurrency_limit=20,
examples=[
{"text": "Hy, who are you?",},
{"text": "What's the current price of Bitcoin",},
{"text": "Create A Beautiful image of Effiel Tower at Night",},
{"text": "Write me a Python function to calculate the first 10 digits of the fibonacci sequence.",},
{"text": "What's the colour of both of Car in given image", "files": ["./car1.png", "./car2.png"]},
],
cache_examples=False,
)
demo.launch() |