Spaces:
Building
Building
Update app.py
Browse files
app.py
CHANGED
@@ -41,39 +41,6 @@ def sample_frames(video_file) :
|
|
41 |
frames=[]
|
42 |
return frames
|
43 |
|
44 |
-
def llava(user_prompt, history):
|
45 |
-
image = user_prompt["files"][-1]
|
46 |
-
txt = user_prompt["text"]
|
47 |
-
img = user_prompt["files"]
|
48 |
-
|
49 |
-
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
|
50 |
-
image_extensions = Image.registered_extensions()
|
51 |
-
image_extensions = tuple([ex for ex, f in image_extensions.items()])
|
52 |
-
|
53 |
-
if image.endswith(video_extensions):
|
54 |
-
image = sample_frames(image)
|
55 |
-
image_tokens = "<image>" * int(len(image))
|
56 |
-
prompt = f"<|im_start|>user {image_tokens}\n{user_prompt}<|im_end|><|im_start|>assistant"
|
57 |
-
|
58 |
-
elif image.endswith(image_extensions):
|
59 |
-
image = Image.open(image).convert("RGB")
|
60 |
-
prompt = f"<|im_start|>user <image>\n{user_prompt}<|im_end|><|im_start|>assistant"
|
61 |
-
|
62 |
-
print(len(image))
|
63 |
-
|
64 |
-
inputs = processor(prompt, image, return_tensors="pt")
|
65 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
|
66 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
67 |
-
generated_text = ""
|
68 |
-
|
69 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
70 |
-
thread.start()
|
71 |
-
|
72 |
-
buffer = ""
|
73 |
-
for new_text in streamer:
|
74 |
-
buffer += new_text
|
75 |
-
yield buffer
|
76 |
-
|
77 |
def extract_text_from_webpage(html_content):
|
78 |
soup = BeautifulSoup(html_content, 'html.parser')
|
79 |
for tag in soup(["script", "style", "header", "footer"]):
|
@@ -122,7 +89,37 @@ def respond(message, history):
|
|
122 |
|
123 |
# Handle image processing
|
124 |
if message["files"]:
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
|
128 |
# Define function metadata for user interface
|
|
|
41 |
frames=[]
|
42 |
return frames
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def extract_text_from_webpage(html_content):
|
45 |
soup = BeautifulSoup(html_content, 'html.parser')
|
46 |
for tag in soup(["script", "style", "header", "footer"]):
|
|
|
89 |
|
90 |
# Handle image processing
|
91 |
if message["files"]:
|
92 |
+
image = user_prompt["files"][-1]
|
93 |
+
txt = user_prompt["text"]
|
94 |
+
img = user_prompt["files"]
|
95 |
+
|
96 |
+
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
|
97 |
+
image_extensions = Image.registered_extensions()
|
98 |
+
image_extensions = tuple([ex for ex, f in image_extensions.items()])
|
99 |
+
|
100 |
+
if image.endswith(video_extensions):
|
101 |
+
image = sample_frames(image)
|
102 |
+
image_tokens = "<image>" * int(len(image))
|
103 |
+
prompt = f"<|im_start|>user {image_tokens}\n{user_prompt}<|im_end|><|im_start|>assistant"
|
104 |
+
|
105 |
+
elif image.endswith(image_extensions):
|
106 |
+
image = Image.open(image).convert("RGB")
|
107 |
+
prompt = f"<|im_start|>user <image>\n{user_prompt}<|im_end|><|im_start|>assistant"
|
108 |
+
|
109 |
+
print(len(image))
|
110 |
+
|
111 |
+
inputs = processor(prompt, image, return_tensors="pt")
|
112 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
|
113 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
114 |
+
generated_text = ""
|
115 |
+
|
116 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
117 |
+
thread.start()
|
118 |
+
|
119 |
+
buffer = ""
|
120 |
+
for new_text in streamer:
|
121 |
+
buffer += new_text
|
122 |
+
yield buffer
|
123 |
|
124 |
|
125 |
# Define function metadata for user interface
|