Spaces:
Building
Building
Update app.py
Browse files
app.py
CHANGED
@@ -75,10 +75,13 @@ def search(query):
|
|
75 |
return all_results
|
76 |
|
77 |
# Initialize inference clients for different models
|
78 |
-
client_gemma = InferenceClient("
|
79 |
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
|
80 |
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
81 |
|
|
|
|
|
|
|
82 |
# Define the main chat function
|
83 |
def respond(message, history):
|
84 |
func_caller = []
|
@@ -104,11 +107,15 @@ def respond(message, history):
|
|
104 |
{"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}, "number_of_image": {"type": "integer", "description": "number of images to generate"}}, "required": ["query"]}}},
|
105 |
{"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
|
106 |
]
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
message_text = message["text"]
|
109 |
func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text}'})
|
110 |
|
111 |
-
response = client_gemma.chat_completion(func_caller, max_tokens=
|
112 |
response = str(response)
|
113 |
try:
|
114 |
response = response[int(response.find("{")):int(response.index("</"))]
|
@@ -117,10 +124,9 @@ def respond(message, history):
|
|
117 |
response = response.replace("\\n", "")
|
118 |
response = response.replace("\\'", "'")
|
119 |
response = response.replace('\\"', '"')
|
|
|
120 |
print(f"\n{response}")
|
121 |
|
122 |
-
func_caller.append({"role": "assistant", "content": f"<functioncall>{response}</functioncall>"})
|
123 |
-
|
124 |
try:
|
125 |
json_data = json.loads(str(response))
|
126 |
if json_data["name"] == "web_search":
|
@@ -145,7 +151,7 @@ def respond(message, history):
|
|
145 |
gr.Info("Generating Image, Please wait 10 sec...")
|
146 |
client = InferenceClient("stabilityai/stable-diffusion-3-medium-diffusers")
|
147 |
seed = random.randint(0,999999)
|
148 |
-
image = client.text_to_image(message_text, negative_prompt=f"{seed}")
|
149 |
yield gr.Image(image)
|
150 |
gr.Info("We are going to mor upgrade image generator in next update")
|
151 |
elif json_data["name"] == "image_qna":
|
|
|
75 |
return all_results
|
76 |
|
77 |
# Initialize inference clients for different models
|
78 |
+
client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
79 |
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
|
80 |
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
81 |
|
82 |
+
|
83 |
+
func_caller = []
|
84 |
+
|
85 |
# Define the main chat function
|
86 |
def respond(message, history):
|
87 |
func_caller = []
|
|
|
107 |
{"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}, "number_of_image": {"type": "integer", "description": "number of images to generate"}}, "required": ["query"]}}},
|
108 |
{"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
|
109 |
]
|
110 |
+
|
111 |
+
for msg in history:
|
112 |
+
func_caller.append({"role": "user", "content": f"{str(msg[0])}"})
|
113 |
+
func_caller.append({"role": "assistant", "content": f"{str(msg[1])}"})
|
114 |
+
|
115 |
message_text = message["text"]
|
116 |
func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> [USER] {message_text}'})
|
117 |
|
118 |
+
response = client_gemma.chat_completion(func_caller, max_tokens=200)
|
119 |
response = str(response)
|
120 |
try:
|
121 |
response = response[int(response.find("{")):int(response.index("</"))]
|
|
|
124 |
response = response.replace("\\n", "")
|
125 |
response = response.replace("\\'", "'")
|
126 |
response = response.replace('\\"', '"')
|
127 |
+
response = response.replace('\\', '')
|
128 |
print(f"\n{response}")
|
129 |
|
|
|
|
|
130 |
try:
|
131 |
json_data = json.loads(str(response))
|
132 |
if json_data["name"] == "web_search":
|
|
|
151 |
gr.Info("Generating Image, Please wait 10 sec...")
|
152 |
client = InferenceClient("stabilityai/stable-diffusion-3-medium-diffusers")
|
153 |
seed = random.randint(0,999999)
|
154 |
+
image = client.text_to_image(message_text, negative_prompt=f"{seed}", num_inference_steps=20 )
|
155 |
yield gr.Image(image)
|
156 |
gr.Info("We are going to mor upgrade image generator in next update")
|
157 |
elif json_data["name"] == "image_qna":
|