KingNish commited on
Commit
8523de2
·
verified ·
1 Parent(s): 437063b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -162
app.py CHANGED
@@ -22,171 +22,9 @@ theme = gr.themes.Soft(
22
  color_accent_soft_dark="transparent"
23
  )
24
 
25
- import edge_tts
26
- import asyncio
27
- import tempfile
28
- import numpy as np
29
- import soxr
30
- from pydub import AudioSegment
31
- import torch
32
- import sentencepiece as spm
33
- import onnxruntime as ort
34
- from huggingface_hub import hf_hub_download, InferenceClient
35
- import requests
36
- from bs4 import BeautifulSoup
37
- import urllib
38
- import random
39
-
40
- # List of user agents to choose from for requests
41
- _useragent_list = [
42
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
43
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
44
- 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
45
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
46
- 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
47
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
48
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
49
- ]
50
-
51
- def get_useragent():
52
- """Returns a random user agent from the list."""
53
- return random.choice(_useragent_list)
54
-
55
- def extract_text_from_webpage(html_content):
56
- """Extracts visible text from HTML content using BeautifulSoup."""
57
- soup = BeautifulSoup(html_content, "html.parser")
58
- # Remove unwanted tags
59
- for tag in soup(["script", "style", "header", "footer", "nav"]):
60
- tag.extract()
61
- # Get the remaining visible text
62
- visible_text = soup.get_text(strip=True)
63
- return visible_text
64
-
65
- def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
66
- """Performs a Google search and returns the results."""
67
- escaped_term = urllib.parse.quote_plus(term)
68
- start = 0
69
- all_results = []
70
-
71
- # Fetch results in batches
72
- while start < num_results:
73
- resp = requests.get(
74
- url="https://www.google.com/search",
75
- headers={"User-Agent": get_useragent()}, # Set random user agent
76
- params={
77
- "q": term,
78
- "num": num_results - start, # Number of results to fetch in this batch
79
- "hl": lang,
80
- "start": start,
81
- "safe": safe,
82
- },
83
- timeout=timeout,
84
- verify=ssl_verify,
85
- )
86
- resp.raise_for_status() # Raise an exception if request fails
87
-
88
- soup = BeautifulSoup(resp.text, "html.parser")
89
- result_block = soup.find_all("div", attrs={"class": "g"})
90
-
91
- # If no results, continue to the next batch
92
- if not result_block:
93
- start += 1
94
- continue
95
-
96
- # Extract link and text from each result
97
- for result in result_block:
98
- link = result.find("a", href=True)
99
- if link:
100
- link = link["href"]
101
- try:
102
- # Fetch webpage content
103
- webpage = requests.get(link, headers={"User-Agent": get_useragent()})
104
- webpage.raise_for_status()
105
- # Extract visible text from webpage
106
- visible_text = extract_text_from_webpage(webpage.text)
107
- all_results.append({"link": link, "text": visible_text})
108
- except requests.exceptions.RequestException as e:
109
- # Handle errors fetching or processing webpage
110
- print(f"Error fetching or processing {link}: {e}")
111
- all_results.append({"link": link, "text": None})
112
- else:
113
- all_results.append({"link": None, "text": None})
114
-
115
- start += len(result_block) # Update starting index for next batch
116
-
117
- return all_results
118
-
119
- # Speech Recognition Model Configuration
120
- model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
121
- sample_rate = 16000
122
-
123
- # Download preprocessor, encoder and tokenizer
124
- preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
125
- encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
126
- tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
127
-
128
- # Mistral Model Configuration
129
- client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
130
- system_instructions1 = "<s>[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
131
-
132
- def resample(audio_fp32, sr):
133
- return soxr.resample(audio_fp32, sr, sample_rate)
134
-
135
- def to_float32(audio_buffer):
136
- return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
137
-
138
- def transcribe(audio_path):
139
- audio_file = AudioSegment.from_file(audio_path)
140
- sr = audio_file.frame_rate
141
- audio_buffer = np.array(audio_file.get_array_of_samples())
142
-
143
- audio_fp32 = to_float32(audio_buffer)
144
- audio_16k = resample(audio_fp32, sr)
145
-
146
- input_signal = torch.tensor(audio_16k).unsqueeze(0)
147
- length = torch.tensor(len(audio_16k)).unsqueeze(0)
148
- processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
149
-
150
- logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
151
-
152
- blank_id = tokenizer.vocab_size()
153
- decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
154
- text = tokenizer.decode_ids(decoded_prediction)
155
-
156
- return text
157
-
158
- def model(text, web_search):
159
- if web_search is True:
160
- """Performs a web search, feeds the results to a language model, and returns the answer."""
161
- web_results = search(text)
162
- web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
163
- formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
164
- stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
165
- return "".join([response.token.text for response in stream if response.token.text != "</s>"])
166
- else:
167
- formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
168
- stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
169
- return "".join([response.token.text for response in stream if response.token.text != "</s>"])
170
-
171
- async def respond(audio, web_search):
172
- user = transcribe(audio)
173
- reply = model(user, web_search)
174
- communicate = edge_tts.Communicate(reply)
175
- with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
176
- tmp_path = tmp_file.name
177
- await communicate.save(tmp_path)
178
- return tmp_path
179
 
180
  with gr.Blocks() as voice:
181
  gr.Markdown("## Temproraly Not Working (Update in Progress)")
182
- with gr.Row():
183
- web_search = gr.Checkbox(label="Web Search", value=False)
184
- input = gr.Audio(label="User Input", sources="microphone", type="filepath")
185
- output = gr.Audio(label="AI", autoplay=True)
186
- gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
187
-
188
-
189
- # Create Gradio blocks for different functionalities
190
 
191
  # Chat interface block
192
  with gr.Blocks(
 
22
  color_accent_soft_dark="transparent"
23
  )
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  with gr.Blocks() as voice:
27
  gr.Markdown("## Temproraly Not Working (Update in Progress)")
 
 
 
 
 
 
 
 
28
 
29
  # Chat interface block
30
  with gr.Blocks(