KingNish commited on
Commit
c28f584
·
verified ·
1 Parent(s): b861d0a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -160
app.py CHANGED
@@ -22,161 +22,6 @@ theme = gr.themes.Soft(
22
  color_accent_soft_dark="transparent"
23
  )
24
 
25
- import edge_tts
26
- import asyncio
27
- import tempfile
28
- import numpy as np
29
- import soxr
30
- from pydub import AudioSegment
31
- import torch
32
- import sentencepiece as spm
33
- import onnxruntime as ort
34
- from huggingface_hub import hf_hub_download, InferenceClient
35
- import requests
36
- from bs4 import BeautifulSoup
37
- import urllib
38
- import random
39
-
40
- # List of user agents to choose from for requests
41
- _useragent_list = [
42
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
43
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
44
- 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
45
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
46
- 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
47
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
48
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
49
- ]
50
-
51
- def get_useragent():
52
- """Returns a random user agent from the list."""
53
- return random.choice(_useragent_list)
54
-
55
- def extract_text_from_webpage(html_content):
56
- """Extracts visible text from HTML content using BeautifulSoup."""
57
- soup = BeautifulSoup(html_content, "html.parser")
58
- # Remove unwanted tags
59
- for tag in soup(["script", "style", "header", "footer", "nav"]):
60
- tag.extract()
61
- # Get the remaining visible text
62
- visible_text = soup.get_text(strip=True)
63
- return visible_text
64
-
65
- def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
66
- """Performs a Google search and returns the results."""
67
- escaped_term = urllib.parse.quote_plus(term)
68
- start = 0
69
- all_results = []
70
-
71
- # Fetch results in batches
72
- while start < num_results:
73
- resp = requests.get(
74
- url="https://www.google.com/search",
75
- headers={"User-Agent": get_useragent()}, # Set random user agent
76
- params={
77
- "q": term,
78
- "num": num_results - start, # Number of results to fetch in this batch
79
- "hl": lang,
80
- "start": start,
81
- "safe": safe,
82
- },
83
- timeout=timeout,
84
- verify=ssl_verify,
85
- )
86
- resp.raise_for_status() # Raise an exception if request fails
87
-
88
- soup = BeautifulSoup(resp.text, "html.parser")
89
- result_block = soup.find_all("div", attrs={"class": "g"})
90
-
91
- # If no results, continue to the next batch
92
- if not result_block:
93
- start += 1
94
- continue
95
-
96
- # Extract link and text from each result
97
- for result in result_block:
98
- link = result.find("a", href=True)
99
- if link:
100
- link = link["href"]
101
- try:
102
- # Fetch webpage content
103
- webpage = requests.get(link, headers={"User-Agent": get_useragent()})
104
- webpage.raise_for_status()
105
- # Extract visible text from webpage
106
- visible_text = extract_text_from_webpage(webpage.text)
107
- all_results.append({"link": link, "text": visible_text})
108
- except requests.exceptions.RequestException as e:
109
- # Handle errors fetching or processing webpage
110
- print(f"Error fetching or processing {link}: {e}")
111
- all_results.append({"link": link, "text": None})
112
- else:
113
- all_results.append({"link": None, "text": None})
114
-
115
- start += len(result_block) # Update starting index for next batch
116
-
117
- return all_results
118
-
119
- # Speech Recognition Model Configuration
120
- model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
121
- sample_rate = 16000
122
-
123
- # Download preprocessor, encoder and tokenizer
124
- preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
125
- encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
126
- tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
127
-
128
- # Mistral Model Configuration
129
- client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
130
- system_instructions1 = "<s>[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Jarvis, made by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
131
-
132
- def resample(audio_fp32, sr):
133
- return soxr.resample(audio_fp32, sr, sample_rate)
134
-
135
- def to_float32(audio_buffer):
136
- return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
137
-
138
- def transcribe(audio_path):
139
- audio_file = AudioSegment.from_file(audio_path)
140
- sr = audio_file.frame_rate
141
- audio_buffer = np.array(audio_file.get_array_of_samples())
142
-
143
- audio_fp32 = to_float32(audio_buffer)
144
- audio_16k = resample(audio_fp32, sr)
145
-
146
- input_signal = torch.tensor(audio_16k).unsqueeze(0)
147
- length = torch.tensor(len(audio_16k)).unsqueeze(0)
148
- processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
149
-
150
- logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
151
-
152
- blank_id = tokenizer.vocab_size()
153
- decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
154
- text = tokenizer.decode_ids(decoded_prediction)
155
-
156
- return text
157
-
158
- def model(text, web_search):
159
- if web_search is True:
160
- """Performs a web search, feeds the results to a language model, and returns the answer."""
161
- web_results = search(text)
162
- web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
163
- formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[ANSWER]"
164
- stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
165
- return "".join([response.token.text for response in stream if response.token.text != "</s>"])
166
- else:
167
- formatted_prompt = system_instructions1 + text + "[JARVIS]"
168
- stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
169
- return "".join([response.token.text for response in stream if response.token.text != "</s>"])
170
-
171
- async def respond(audio, web_search):
172
- user = transcribe(audio)
173
- reply = model(user, web_search)
174
- communicate = edge_tts.Communicate(reply)
175
- with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
176
- tmp_path = tmp_file.name
177
- await communicate.save(tmp_path)
178
-
179
-
180
  # Create Gradio blocks for different functionalities
181
 
182
  # Chat interface block
@@ -228,11 +73,8 @@ with gr.Blocks(
228
 
229
  # Voice chat block
230
  with gr.Blocks() as voice:
231
- with gr.Row():
232
- web_search = gr.Checkbox(label="Web Search", value=False)
233
- input = gr.Audio(label="User Input", sources="microphone", type="filepath")
234
- output = gr.Audio(label="AI", autoplay=True)
235
- gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
236
 
237
  # Live chat block
238
  with gr.Blocks() as livechat:
 
22
  color_accent_soft_dark="transparent"
23
  )
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  # Create Gradio blocks for different functionalities
26
 
27
  # Chat interface block
 
73
 
74
  # Voice chat block
75
  with gr.Blocks() as voice:
76
+ gr.HTML("<iframe src='https://kingnish-voice-chat-ai.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>")
77
+
 
 
 
78
 
79
  # Live chat block
80
  with gr.Blocks() as livechat: