KingNish commited on
Commit
cd7afd4
·
verified ·
1 Parent(s): 1c3216f

Update voice_chat.py

Browse files
Files changed (1) hide show
  1. voice_chat.py +8 -99
voice_chat.py CHANGED
@@ -9,89 +9,6 @@ import torch
9
  import sentencepiece as spm
10
  import onnxruntime as ort
11
  from huggingface_hub import hf_hub_download, InferenceClient
12
- import requests
13
- from bs4 import BeautifulSoup
14
- import urllib
15
- import random
16
-
17
- # List of user agents to choose from for requests
18
- _useragent_list = [
19
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
20
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
21
- 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
22
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
23
- 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
24
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
25
- 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
26
- ]
27
-
28
- def get_useragent():
29
- """Returns a random user agent from the list."""
30
- return random.choice(_useragent_list)
31
-
32
- def extract_text_from_webpage(html_content):
33
- """Extracts visible text from HTML content using BeautifulSoup."""
34
- soup = BeautifulSoup(html_content, "html.parser")
35
- # Remove unwanted tags
36
- for tag in soup(["script", "style", "header", "footer", "nav"]):
37
- tag.extract()
38
- # Get the remaining visible text
39
- visible_text = soup.get_text(strip=True)
40
- return visible_text
41
-
42
- def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
43
- """Performs a Google search and returns the results."""
44
- escaped_term = urllib.parse.quote_plus(term)
45
- start = 0
46
- all_results = []
47
-
48
- # Fetch results in batches
49
- while start < num_results:
50
- resp = requests.get(
51
- url="https://www.google.com/search",
52
- headers={"User-Agent": get_useragent()}, # Set random user agent
53
- params={
54
- "q": term,
55
- "num": num_results - start, # Number of results to fetch in this batch
56
- "hl": lang,
57
- "start": start,
58
- "safe": safe,
59
- },
60
- timeout=timeout,
61
- verify=ssl_verify,
62
- )
63
- resp.raise_for_status() # Raise an exception if request fails
64
-
65
- soup = BeautifulSoup(resp.text, "html.parser")
66
- result_block = soup.find_all("div", attrs={"class": "g"})
67
-
68
- # If no results, continue to the next batch
69
- if not result_block:
70
- start += 1
71
- continue
72
-
73
- # Extract link and text from each result
74
- for result in result_block:
75
- link = result.find("a", href=True)
76
- if link:
77
- link = link["href"]
78
- try:
79
- # Fetch webpage content
80
- webpage = requests.get(link, headers={"User-Agent": get_useragent()})
81
- webpage.raise_for_status()
82
- # Extract visible text from webpage
83
- visible_text = extract_text_from_webpage(webpage.text)
84
- all_results.append({"link": link, "text": visible_text})
85
- except requests.exceptions.RequestException as e:
86
- # Handle errors fetching or processing webpage
87
- print(f"Error fetching or processing {link}: {e}")
88
- all_results.append({"link": link, "text": None})
89
- else:
90
- all_results.append({"link": None, "text": None})
91
-
92
- start += len(result_block) # Update starting index for next batch
93
-
94
- return all_results
95
 
96
  # Speech Recognition Model Configuration
97
  model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
@@ -103,8 +20,8 @@ encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfold
103
  tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
104
 
105
  # Mistral Model Configuration
106
- client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
107
- system_instructions1 = "<s>[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Jarvis, made by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
108
 
109
  def resample(audio_fp32, sr):
110
  return soxr.resample(audio_fp32, sr, sample_rate)
@@ -132,22 +49,14 @@ def transcribe(audio_path):
132
 
133
  return text
134
 
135
- def model(text, web_search):
136
- if web_search is True:
137
- """Performs a web search, feeds the results to a language model, and returns the answer."""
138
- web_results = search(text)
139
- web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
140
- formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[ANSWER]"
141
- stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
142
- return "".join([response.token.text for response in stream if response.token.text != "</s>"])
143
- else:
144
- formatted_prompt = system_instructions1 + text + "[JARVIS]"
145
- stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
146
- return "".join([response.token.text for response in stream if response.token.text != "</s>"])
147
 
148
- async def respond(audio, web_search):
149
  user = transcribe(audio)
150
- reply = model(user, web_search)
151
  communicate = edge_tts.Communicate(reply)
152
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
153
  tmp_path = tmp_file.name
 
9
  import sentencepiece as spm
10
  import onnxruntime as ort
11
  from huggingface_hub import hf_hub_download, InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  # Speech Recognition Model Configuration
14
  model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
 
20
  tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
21
 
22
  # Mistral Model Configuration
23
+ client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
24
+ system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
25
 
26
  def resample(audio_fp32, sr):
27
  return soxr.resample(audio_fp32, sr, sample_rate)
 
49
 
50
  return text
51
 
52
+ def model(text):
53
+ formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
54
+ stream = client1.text_generation(formatted_prompt, max_new_tokens=300)
55
+ return stream[:-4]
 
 
 
 
 
 
 
 
56
 
57
+ async def respond(audio):
58
  user = transcribe(audio)
59
+ reply = model(user)
60
  communicate = edge_tts.Communicate(reply)
61
  with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
62
  tmp_path = tmp_file.name