Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,043 Bytes
40462a0 7aafe2f cac40c5 c82ffd4 cac40c5 951bbb4 cac40c5 21e68e9 40462a0 cac40c5 6ddf47b cac40c5 caec759 cac40c5 7aafe2f cac40c5 7aafe2f cac40c5 40462a0 cac40c5 7aafe2f cac40c5 7aafe2f cac40c5 7aafe2f cac40c5 7aafe2f cac40c5 7aafe2f ffe402c a140f0e 7aafe2f cac40c5 7aafe2f 43cc46d cac40c5 43cc46d cac40c5 43cc46d 7aafe2f f1c2277 7aafe2f 43cc46d f1c2277 43cc46d f1c2277 43cc46d f1c2277 3bad26c 43cc46d 3bad26c 43cc46d 7aafe2f 43cc46d f1c2277 43cc46d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
import time
import logging
from diffusers import DiffusionPipeline, AutoencoderTiny
# Using AttnProcessor2_0 for potential speedup with PyTorch 2.x
from diffusers.models.attention_processor import AttnProcessor2_0
# Assuming custom_pipeline defines FluxWithCFGPipeline correctly
from custom_pipeline import FluxWithCFGPipeline
# --- Setup Logging ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Torch Optimizations ---
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True # Enable cuDNN benchmark for potentially faster convolutions
# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048 # Keep a reasonable limit to prevent OOMs
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 1024
DEFAULT_INFERENCE_STEPS = 1 # FLUX Schnell is designed for few steps
MIN_INFERENCE_STEPS = 1
MAX_INFERENCE_STEPS = 8 # Allow slightly more steps for potential quality boost
ENHANCE_STEPS = 4 # Fixed steps for the enhance button
# --- Device and Model Setup ---
dtype = torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = None # Initialize pipe to None
try:
logging.info("Loading diffusion pipeline...")
pipe = FluxWithCFGPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
)
logging.info("Loading VAE...")
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
logging.info(f"Moving pipeline to {device}...")
pipe.to(device)
# Apply optimizations
logging.info("Setting attention processor...")
pipe.unet.set_attn_processor(AttnProcessor2_0())
pipe.vae.set_attn_processor(AttnProcessor2_0()) # VAE might benefit too
logging.info("Loading and fusing LoRA...")
pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better")
pipe.set_adapters(["better"], adapter_weights=[1.0])
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0) # Fuse for potential speedup
pipe.unload_lora_weights() # Unload after fusing
logging.info("LoRA fused and unloaded.")
# --- Compilation (Major Speed Optimization) ---
# Note: Compilation takes time on the first run.
# logging.info("Compiling UNet (this may take a moment)...")
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) # Use reduce-overhead for dynamic shapes
# logging.info("Compiling VAE Decoder...")
# pipe.vae.decoder = torch.compile(pipe.vae.decoder, mode="reduce-overhead", fullgraph=True)
# logging.info("Compiling VAE Encoder...")
# pipe.vae.encoder = torch.compile(pipe.vae.encoder, mode="reduce-overhead", fullgraph=True)
# logging.info("Model compilation finished.")
# --- Optional: Warm-up Run ---
# logging.info("Performing warm-up run...")
# with torch.inference_mode():
# _ = pipe(prompt="warmup", num_inference_steps=1, generator=torch.Generator(device=device).manual_seed(0), output_type="pil", return_dict=False)[0]
# logging.info("Warm-up complete.")
# Clear cache after setup
if torch.cuda.is_available():
torch.cuda.empty_cache()
logging.info("CUDA cache cleared after setup.")
except Exception as e:
logging.error(f"Error during model loading or setup: {e}", exc_info=True)
# Display error in Gradio if UI is already built, otherwise just log and exit.
# For simplicity here, we'll rely on the Gradio UI showing an error if `pipe` is None later.
# If running script directly, consider `sys.exit()`
# raise gr.Error(f"Failed to load models. Check logs for details. Error: {e}")
# --- Inference Function ---
@spaces.GPU(duration=30) # Slightly increased duration buffer
def generate_image(prompt: str, seed: int = 42, width: int = DEFAULT_WIDTH, height: int = DEFAULT_HEIGHT, randomize_seed: bool = False, num_inference_steps: int = DEFAULT_INFERENCE_STEPS, is_enhance: bool = False):
"""Generates an image using the FLUX pipeline with error handling."""
if pipe is None:
raise gr.Error("Diffusion pipeline failed to load. Cannot generate images.")
if not prompt or prompt.strip() == "":
# Return a blank image or previous result if prompt is empty?
# For now, raise warning and return None.
gr.Warning("Prompt is empty. Please enter a description.")
# Returning None for image, original seed, and error message
return None, seed, "Error: Empty prompt"
start_time = time.time()
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Clamp dimensions to avoid excessive memory usage
width = min(width, MAX_IMAGE_SIZE)
height = min(height, MAX_IMAGE_SIZE)
# Use fixed steps for enhance button, otherwise use slider value
steps_to_use = ENHANCE_STEPS if is_enhance else num_inference_steps
# Clamp steps
steps_to_use = max(MIN_INFERENCE_STEPS, min(steps_to_use, MAX_INFERENCE_STEPS))
logging.info(f"Generating image with prompt: '{prompt}', seed: {seed}, size: {width}x{height}, steps: {steps_to_use}")
try:
# Ensure generator is on the correct device
generator = torch.Generator(device=device).manual_seed(int(float(seed)))
# Use inference_mode for efficiency
with torch.inference_mode():
# Generate the image (assuming pipe returns list/tuple with image first)
# Modify pipe call based on its actual signature if needed
result_img = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=steps_to_use,
generator=generator,
output_type="pil", # Ensure PIL output for Gradio Image component
return_dict=False # Assuming the custom pipeline supports this for direct output
)[0][0] # Assuming the output structure is [[img]]
latency = time.time() - start_time
latency_str = f"Latency: {latency:.2f} seconds (Steps: {steps_to_use})"
logging.info(f"Image generated successfully. {latency_str}")
return result_img, seed, latency_str
except torch.cuda.OutOfMemoryError as e:
logging.error(f"CUDA OutOfMemoryError: {e}", exc_info=True)
# Clear cache and suggest reducing size/steps
if torch.cuda.is_available():
torch.cuda.empty_cache()
raise gr.Error("GPU ran out of memory. Try reducing the image width/height or the number of inference steps.")
except Exception as e:
logging.error(f"Error during image generation: {e}", exc_info=True)
# Clear cache just in case
if torch.cuda.is_available():
torch.cuda.empty_cache()
raise gr.Error(f"An error occurred during generation: {e}")
# --- Real-time Generation Wrapper ---
# This function checks the realtime toggle before calling the main generation function.
# It's triggered by changes in prompt or sliders when realtime is enabled.
def handle_realtime_update(realtime_enabled: bool, prompt: str, seed: int, width: int, height: int, randomize_seed: bool, num_inference_steps: int):
if realtime_enabled and pipe is not None:
logging.debug("Realtime update triggered.")
# Call generate_image directly. Errors within generate_image will be caught and raised as gr.Error.
# We don't set is_enhance=True for realtime updates.
return generate_image(prompt, seed, width, height, randomize_seed, num_inference_steps, is_enhance=False)
else:
# If realtime is disabled or pipe failed, don't update the image, seed, or latency.
# Return gr.update() for each output component to indicate no change.
logging.debug("Realtime update skipped (disabled or pipe error).")
return gr.update(), gr.update(), gr.update()
# --- Example Prompts ---
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cute white cat holding a sign that says hello world",
"an anime illustration of Steve Jobs",
"Create image of Modern house in minecraft style",
"photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair",
"Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.",
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",
"High-resolution photorealistic render of a sleek, futuristic motorcycle parked on a neon-lit street at night, rain reflecting the lights.",
"Watercolor painting of a cozy bookstore interior with overflowing shelves and a cat sleeping in a sunbeam.",
]
# --- Gradio UI ---
with gr.Blocks() as demo:
with gr.Column(elem_id="app-container"):
gr.Markdown("# 🎨 Realtime FLUX Image Generator")
gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.")
gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>")
with gr.Row():
with gr.Column(scale=2.5):
result = gr.Image(label="Generated Image", show_label=False, interactive=False)
with gr.Column(scale=1):
prompt = gr.Text(
label="Prompt",
placeholder="Describe the image you want to generate...",
lines=3,
show_label=False,
container=False,
)
generateBtn = gr.Button("🖼️ Generate Image")
enhanceBtn = gr.Button("🚀 Enhance Image")
with gr.Column("Advanced Options"):
with gr.Row():
realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False)
latency = gr.Text(label="Latency")
with gr.Row():
seed = gr.Number(label="Seed", value=42)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS)
with gr.Row():
gr.Markdown("### 🌟 Inspiration Gallery")
with gr.Row():
gr.Examples(
examples=examples,
fn=generate_image,
inputs=[prompt],
outputs=[result, seed, latency],
cache_examples="lazy"
)
enhanceBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height],
outputs=[result, seed, latency],
show_progress="full",
queue=False,
concurrency_limit=None
)
generateBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="full",
api_name="RealtimeFlux",
queue=False
)
def update_ui(realtime_enabled):
return {
prompt: gr.update(interactive=True),
generateBtn: gr.update(visible=not realtime_enabled)
}
realtime.change(
fn=update_ui,
inputs=[realtime],
outputs=[prompt, generateBtn],
queue=False,
concurrency_limit=None
)
def realtime_generation(*args):
if args[0]: # If realtime is enabled
return next(generate_image(*args[1:]))
prompt.submit(
fn=generate_image,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="full",
queue=False,
concurrency_limit=None
)
for component in [prompt, width, height, num_inference_steps]:
component.input(
fn=realtime_generation,
inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="hidden",
trigger_mode="always_last",
queue=False,
concurrency_limit=None
)
# Launch the app
demo.launch()
|