Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ import torch
|
|
6 |
import time
|
7 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
8 |
from custom_pipeline import FluxWithCFGPipeline
|
9 |
-
from diffusers.hooks import apply_group_offloading
|
10 |
|
11 |
# --- Torch Optimizations ---
|
12 |
torch.backends.cuda.matmul.allow_tf32 = True
|
@@ -31,46 +30,11 @@ pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtyp
|
|
31 |
|
32 |
pipe.to(device)
|
33 |
|
34 |
-
group_offloading = None
|
35 |
-
|
36 |
# --- Inference Function ---
|
37 |
@spaces.GPU
|
38 |
def generate_image(prompt: str, seed: int = 42, width: int = DEFAULT_WIDTH, height: int = DEFAULT_HEIGHT, randomize_seed: bool = False, num_inference_steps: int = DEFAULT_INFERENCE_STEPS, is_enhance: bool = False):
|
39 |
"""Generates an image using the FLUX pipeline with error handling."""
|
40 |
|
41 |
-
global group_offloading
|
42 |
-
if not group_offloading:
|
43 |
-
apply_group_offloading(
|
44 |
-
pipe.transformer,
|
45 |
-
offload_type="leaf_level",
|
46 |
-
offload_device=torch.device("cpu"),
|
47 |
-
onload_device=torch.device("cuda"),
|
48 |
-
use_stream=True,
|
49 |
-
)
|
50 |
-
apply_group_offloading(
|
51 |
-
pipe.text_encoder,
|
52 |
-
offload_device=torch.device("cpu"),
|
53 |
-
onload_device=torch.device("cuda"),
|
54 |
-
offload_type="leaf_level",
|
55 |
-
use_stream=True,
|
56 |
-
)
|
57 |
-
apply_group_offloading(
|
58 |
-
pipe.text_encoder_2,
|
59 |
-
offload_device=torch.device("cpu"),
|
60 |
-
onload_device=torch.device("cuda"),
|
61 |
-
offload_type="leaf_level",
|
62 |
-
use_stream=True,
|
63 |
-
)
|
64 |
-
apply_group_offloading(
|
65 |
-
pipe.vae,
|
66 |
-
offload_device=torch.device("cpu"),
|
67 |
-
onload_device=torch.device("cuda"),
|
68 |
-
offload_type="leaf_level",
|
69 |
-
use_stream=True,
|
70 |
-
)
|
71 |
-
|
72 |
-
group_offloading = True
|
73 |
-
|
74 |
if pipe is None:
|
75 |
raise gr.Error("Diffusion pipeline failed to load. Cannot generate images.")
|
76 |
|
|
|
6 |
import time
|
7 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
8 |
from custom_pipeline import FluxWithCFGPipeline
|
|
|
9 |
|
10 |
# --- Torch Optimizations ---
|
11 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
30 |
|
31 |
pipe.to(device)
|
32 |
|
|
|
|
|
33 |
# --- Inference Function ---
|
34 |
@spaces.GPU
|
35 |
def generate_image(prompt: str, seed: int = 42, width: int = DEFAULT_WIDTH, height: int = DEFAULT_HEIGHT, randomize_seed: bool = False, num_inference_steps: int = DEFAULT_INFERENCE_STEPS, is_enhance: bool = False):
|
36 |
"""Generates an image using the FLUX pipeline with error handling."""
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
if pipe is None:
|
39 |
raise gr.Error("Diffusion pipeline failed to load. Cannot generate images.")
|
40 |
|