import gradio as gr import numpy as np import random import spaces import torch import time import logging from diffusers import DiffusionPipeline, AutoencoderTiny # Using AttnProcessor2_0 for potential speedup with PyTorch 2.x from diffusers.models.attention_processor import AttnProcessor2_0 # Assuming custom_pipeline defines FluxWithCFGPipeline correctly from custom_pipeline import FluxWithCFGPipeline # --- Setup Logging --- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # --- Torch Optimizations --- torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True # Enable cuDNN benchmark for potentially faster convolutions # --- Constants --- MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 # Keep a reasonable limit to prevent OOMs DEFAULT_WIDTH = 1024 DEFAULT_HEIGHT = 1024 DEFAULT_INFERENCE_STEPS = 1 # FLUX Schnell is designed for few steps MIN_INFERENCE_STEPS = 1 MAX_INFERENCE_STEPS = 8 # Allow slightly more steps for potential quality boost ENHANCE_STEPS = 2 # Fixed steps for the enhance button # --- Device and Model Setup --- dtype = torch.float16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = None # Initialize pipe to None try: logging.info("Loading diffusion pipeline...") pipe = FluxWithCFGPipeline.from_pretrained( "black-forest-labs/FLUX.1-schnell", torch_dtype=dtype ) logging.info("Loading VAE...") pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype) logging.info(f"Moving pipeline to {device}...") pipe.to(device) # Apply optimizations logging.info("Setting attention processor...") pipe.unet.set_attn_processor(AttnProcessor2_0()) pipe.vae.set_attn_processor(AttnProcessor2_0()) # VAE might benefit too logging.info("Loading and fusing LoRA...") pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better") pipe.set_adapters(["better"], adapter_weights=[1.0]) pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0) # Fuse for potential speedup pipe.unload_lora_weights() # Unload after fusing logging.info("LoRA fused and unloaded.") # --- Compilation (Major Speed Optimization) --- # logging.info("Compiling VAE Decoder...") # pipe.vae.decoder = torch.compile(pipe.vae.decoder, mode="reduce-overhead", fullgraph=True) # logging.info("Compiling VAE Encoder...") # pipe.vae.encoder = torch.compile(pipe.vae.encoder, mode="reduce-overhead", fullgraph=True) # logging.info("Model compilation finished.") # Clear cache after setup if torch.cuda.is_available(): torch.cuda.empty_cache() logging.info("CUDA cache cleared after setup.") except Exception as e: logging.error(f"Error during model loading or setup: {e}", exc_info=True) # Display error in Gradio if UI is already built, otherwise just log and exit. # For simplicity here, we'll rely on the Gradio UI showing an error if `pipe` is None later. # If running script directly, consider `sys.exit()` # raise gr.Error(f"Failed to load models. Check logs for details. Error: {e}") # --- Inference Function --- @spaces.GPU(duration=30) # Slightly increased duration buffer def generate_image(prompt: str, seed: int = 42, width: int = DEFAULT_WIDTH, height: int = DEFAULT_HEIGHT, randomize_seed: bool = False, num_inference_steps: int = DEFAULT_INFERENCE_STEPS, is_enhance: bool = False): """Generates an image using the FLUX pipeline with error handling.""" if pipe is None: raise gr.Error("Diffusion pipeline failed to load. Cannot generate images.") if not prompt or prompt.strip() == "": # Return a blank image or previous result if prompt is empty? # For now, raise warning and return None. gr.Warning("Prompt is empty. Please enter a description.") # Returning None for image, original seed, and error message return None, seed, "Error: Empty prompt" start_time = time.time() if randomize_seed: seed = random.randint(0, MAX_SEED) # Clamp dimensions to avoid excessive memory usage width = min(width, MAX_IMAGE_SIZE) height = min(height, MAX_IMAGE_SIZE) # Use fixed steps for enhance button, otherwise use slider value steps_to_use = ENHANCE_STEPS if is_enhance else num_inference_steps # Clamp steps steps_to_use = max(MIN_INFERENCE_STEPS, min(steps_to_use, MAX_INFERENCE_STEPS)) logging.info(f"Generating image with prompt: '{prompt}', seed: {seed}, size: {width}x{height}, steps: {steps_to_use}") try: # Ensure generator is on the correct device generator = torch.Generator(device=device).manual_seed(int(float(seed))) # Use inference_mode for efficiency with torch.inference_mode(): # Generate the image (assuming pipe returns list/tuple with image first) # Modify pipe call based on its actual signature if needed result_img = pipe( prompt=prompt, width=width, height=height, num_inference_steps=steps_to_use, generator=generator, output_type="pil", # Ensure PIL output for Gradio Image component return_dict=False # Assuming the custom pipeline supports this for direct output )[0][0] # Assuming the output structure is [[img]] latency = time.time() - start_time latency_str = f"Latency: {latency:.2f} seconds (Steps: {steps_to_use})" logging.info(f"Image generated successfully. {latency_str}") return result_img, seed, latency_str except torch.cuda.OutOfMemoryError as e: logging.error(f"CUDA OutOfMemoryError: {e}", exc_info=True) # Clear cache and suggest reducing size/steps if torch.cuda.is_available(): torch.cuda.empty_cache() raise gr.Error("GPU ran out of memory. Try reducing the image width/height or the number of inference steps.") except Exception as e: logging.error(f"Error during image generation: {e}", exc_info=True) # Clear cache just in case if torch.cuda.is_available(): torch.cuda.empty_cache() raise gr.Error(f"An error occurred during generation: {e}") # --- Real-time Generation Wrapper --- # This function checks the realtime toggle before calling the main generation function. # It's triggered by changes in prompt or sliders when realtime is enabled. def handle_realtime_update(realtime_enabled: bool, prompt: str, seed: int, width: int, height: int, randomize_seed: bool, num_inference_steps: int): if realtime_enabled and pipe is not None: logging.debug("Realtime update triggered.") # Call generate_image directly. Errors within generate_image will be caught and raised as gr.Error. # We don't set is_enhance=True for realtime updates. return generate_image(prompt, seed, width, height, randomize_seed, num_inference_steps, is_enhance=False) else: # If realtime is disabled or pipe failed, don't update the image, seed, or latency. # Return gr.update() for each output component to indicate no change. logging.debug("Realtime update skipped (disabled or pipe error).") return gr.update(), gr.update(), gr.update() # --- Example Prompts --- examples = [ "a tiny astronaut hatching from an egg on the moon", "a cute white cat holding a sign that says hello world", "an anime illustration of Steve Jobs", "Create image of Modern house in minecraft style", "photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair", "Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.", "Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.", "High-resolution photorealistic render of a sleek, futuristic motorcycle parked on a neon-lit street at night, rain reflecting the lights.", "Watercolor painting of a cozy bookstore interior with overflowing shelves and a cat sleeping in a sunbeam.", ] # --- Gradio UI --- with gr.Blocks() as demo: with gr.Column(elem_id="app-container"): gr.Markdown("# 🎨 Realtime FLUX Image Generator") gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.") gr.Markdown("Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.") with gr.Row(): with gr.Column(scale=2.5): result = gr.Image(label="Generated Image", show_label=False, interactive=False) with gr.Column(scale=1): prompt = gr.Text( label="Prompt", placeholder="Describe the image you want to generate...", lines=3, show_label=False, container=False, ) generateBtn = gr.Button("🖼️ Generate Image") enhanceBtn = gr.Button("🚀 Enhance Image") with gr.Column("Advanced Options"): with gr.Row(): realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False) latency = gr.Text(label="Latency") with gr.Row(): seed = gr.Number(label="Seed", value=42) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH) height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT) num_inference_steps = gr.Slider(label="Inference Steps", minimum=MIN_INFERENCE_STEPS, maximum=MAX_INFERENCE_STEPS, step=1, value=DEFAULT_INFERENCE_STEPS) with gr.Row(): gr.Markdown("### 🌟 Inspiration Gallery") with gr.Row(): gr.Examples( examples=examples, fn=generate_image, inputs=[prompt], outputs=[result, seed, latency], cache_examples=True, cache_mode="eager" ) enhanceBtn.click( fn=generate_image, inputs=[prompt, seed, width, height], outputs=[result, seed, latency], show_progress="full", queue=False, concurrency_limit=None ) generateBtn.click( fn=generate_image, inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], outputs=[result, seed, latency], show_progress="full", api_name="RealtimeFlux", queue=False ) def update_ui(realtime_enabled): return { prompt: gr.update(interactive=True), generateBtn: gr.update(visible=not realtime_enabled) } realtime.change( fn=update_ui, inputs=[realtime], outputs=[prompt, generateBtn], queue=False, concurrency_limit=None ) def realtime_generation(*args): if args[0]: # If realtime is enabled return next(generate_image(*args[1:])) prompt.submit( fn=generate_image, inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], outputs=[result, seed, latency], show_progress="full", queue=False, concurrency_limit=None ) for component in [prompt, width, height, num_inference_steps]: component.input( fn=realtime_generation, inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps], outputs=[result, seed, latency], show_progress="hidden", trigger_mode="always_last", queue=False, concurrency_limit=None ) # Launch the app demo.launch()