File size: 30,526 Bytes
54fa0c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
# from transformers import pipeline
# classifier = pipeline("token-classification", model = "bigcode/starpii", aggregation_strategy="simple")
# classifier("Hello I'm John and my IP address is 196.780.89.78")
# from transformers import AutoModelForTokenClassification, AutoTokenizer
# import torch
# # Load the pre-trained model and tokenizer
# model_name = "bigcode/starpii"
# model = AutoModelForTokenClassification.from_pretrained(model_name)
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# # Prepare input text
# text = "from transformers import AutoModelForTokenClassification, AutoTokenizer import torch secretkey= cmVnrGtuOjAxOjE3MjEyODUwMjg6M0RrNjVMVGZEaGd6T0RiZ09FR3M5MEV5Tk0z ipadress= 10.83.73.87.84 email= [email protected]"
# inputs = tokenizer(text, return_tensors="pt")
# # Perform inference
# with torch.no_grad():
# outputs = model(**inputs)
# # Get the predicted labels
# predicted_labels = torch.argmax(outputs.logits, dim=2)
# labels = [model.config.id2label[label_id] for label_id in predicted_labels[0].tolist()]
# # Print the labels
# print(labels)
# from transformers import AutoModelForTokenClassification, AutoTokenizer
# import torch
# # Load the pre-trained model and tokenizer
# model_name = "bigcode/starpii"
# model = AutoModelForTokenClassification.from_pretrained(model_name)
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# # Prepare input text
# text = "from transformers import AutoModelForTokenClassification, AutoTokenizer import torch secretkey= cmVnrGtuOjAxOjE3MjEyODUwMjg6M0RrNjVMVGZEaGd6T0RiZ09FR3M5MEV5Tk0z ipadress= 10.83.73.87.84 email= [email protected]"
# inputs = tokenizer(text, return_tensors="pt")
# # Perform inference
# with torch.no_grad():
# outputs = model(**inputs)
# # Get the predicted labels
# predicted_labels = torch.argmax(outputs.logits, dim=2)
# labels = [model.config.id2label[label_id] for label_id in predicted_labels[0].tolist()]
# # Replace IP address with the label or "IP_ADDRESS"
# output_text = text
# current_ip = ""
# for token, label in zip(inputs["input_ids"][0], labels):
# token_text = tokenizer.decode(token).strip()
# if label == "B-EMAIL":
# current_ip += token_text
# if label == "I-EMAIL":
# current_ip += token_text
# elif current_ip:
# output_text = output_text.replace(current_ip, "EMAILID")
# current_ip = ""
# print("output text",output_text)
## SAVED THE MODEL LOCALLY USING THIS CODE
## USING THIS CODE TEH HUGGINGFACE MODEL IS SAVED LOCALLY AND USED IN BELOW CODE
## FOR TEXT AS WELL AS FILE DETECTION
# from transformers import AutoModelForTokenClassification, AutoTokenizer
# # Load the pre-trained model and tokenizer
# model_name = "bigcode/starpii"
# model = AutoModelForTokenClassification.from_pretrained(model_name)
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# # Specify the directory where you want to save the model
# local_model_directory = "./nermodel"
# # Save the model and tokenizer to the local directory
# model.save_pretrained(local_model_directory)
# tokenizer.save_pretrained(local_model_directory)
# print(f"Model and tokenizer saved to {local_model_directory}")
## ABOVE COMMENTED CODE IS FOR REMOVAL!!!
# NER MODEL DETECTION FOR TEXT
from transformers import AutoModelForTokenClassification, AutoTokenizer
import torch
import os
import autopep8
import re
class code_detect_ner:
# def textner(text):
# # Load the model and tokenizer from the local directory
# local_model_directory = "privacy/util/code_detect/ner/pii_inference/nermodel"
# model = AutoModelForTokenClassification.from_pretrained(local_model_directory)
# tokenizer = AutoTokenizer.from_pretrained(local_model_directory)
# # Prepare input text
# inputs = tokenizer(text, return_tensors="pt")
# # Perform inference
# with torch.no_grad():
# outputs = model(**inputs)
# # Get the predicted labels
# predicted_labels = torch.argmax(outputs.logits, dim=2)
# labels = [model.config.id2label[label_id] for label_id in predicted_labels[0].tolist()]
# # Define a mapping of entity types to placeholders
# entity_mapping = {
# "USERNAME": "<USERNAME>",
# "EMAIL": "<EMAIL>",
# "IP_ADDRESS": "<IP_ADDRESS>",
# "KEY": "<KEY>",
# }
# # Initialize variables
# redacted_text = ""
# current_entity = None
# last_token_was_special = False
# # Redact entities in the original text
# for token, label in zip(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]), labels):
# if token.startswith("Ġ"):
# last_token_was_special = True
# token = token[1:] # Remove the leading "Ġ" character if present
# else:
# last_token_was_special = False
# if label.startswith("B-"):
# current_entity = label[2:]
# redacted_text += f" {entity_mapping.get(current_entity, current_entity)}"
# elif label.startswith("I-") and current_entity is not None:
# pass # Skip intermediate tokens of the entity
# else:
# current_entity = None
# if last_token_was_special and not token.startswith("Ġ"):
# redacted_text += " "
# redacted_text += token
# redacted_text = redacted_text.replace("Ġ", "")
# redacted_text = redacted_text.replace("č", "")
# redacted_text = redacted_text.replace("Ċ", "")
# # redacted_text = redacted_text.replace("Ċ", "")
# # Print the redacted text
# print("Redacted Text:", redacted_text.strip())
# return redacted_text.strip()
def textner(text):
# Load the model and tokenizer from the local directory
local_model_directory = "privacy/util/code_detect/ner/pii_inference/nermodel"
model = AutoModelForTokenClassification.from_pretrained(local_model_directory)
tokenizer = AutoTokenizer.from_pretrained(local_model_directory)
print("textNER", text)
# Prepare input text
inputs = tokenizer(text, return_tensors="pt")
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
# Get the predicted labels
predicted_labels = torch.argmax(outputs.logits, dim=2)
labels = [model.config.id2label[label_id] for label_id in predicted_labels[0].tolist()]
print(predicted_labels,"predicted_labels")
print("labels",labels)
# Define a mapping of entity types to placeholders
entity_mapping = {
"<USERNAME>": "<USERNAME>",
"<EMAIL>": "<EMAIL>",
"<IP_ADDRESS>": "<IP_ADDRESS>",
"<KEY>": "<KEY>",
}
# Initialize variables
redacted_text = ""
current_entity = None
last_token_was_special = False
# Redact entities in the original text
for token, label in zip(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]), labels):
if token.startswith("Ġ"):
last_token_was_special = True
token = token[1:] # Remove the leading "Ġ" character
else:
last_token_was_special = False
if label.startswith("B-"):
current_entity = label[2:]
redacted_text += f"<{entity_mapping.get(current_entity, current_entity)}>"
elif label.startswith("I-") and current_entity is not None:
pass # Skip intermediate tokens of the entity
else:
current_entity = None
if last_token_was_special and not token.startswith("Ġ"):
redacted_text += " "
redacted_text += token
# Print the redacted text
#code_detect_ner.filener("privacy/util/code_detect/ner/pii_inference/input_code.java")
redacted_text = redacted_text.replace("Ġ", "")
redacted_text = redacted_text.replace("č", "")
redacted_text = redacted_text.replace("Ċ", "")
print("Redacted Text:", redacted_text.strip())
return redacted_text
# def filener(input_code_file):
# ## NER DETECTION FROM FILE BUT FOR BIG CODE!!!!!!!!!!!!!!
# from transformers import AutoModelForTokenClassification, AutoTokenizer
# import torch
# # Load the model and tokenizer from the local directory
# local_model_directory = "privacy/util/code_detect/ner/pii_inference/nermodel"
# model = AutoModelForTokenClassification.from_pretrained(local_model_directory)
# tokenizer = AutoTokenizer.from_pretrained(local_model_directory, model_max_length=10000)
# # Specify the input code file
# #input_code_file = "input_code.java"
# # input_code_file = "input.py"
# # Read the code from the file
# with open(input_code_file, "r", encoding="utf-8") as file:
# code = file.read()
# #code = input_code_file.file.read()
# # Define a chunk size (adjust as needed)
# chunk_size = 1000
# # Initialize the redacted text
# redacted_text = ""
# current_entity = None
# last_token_was_special = False
# # Split the code into chunks
# code_chunks = [code[i:i + chunk_size] for i in range(0, len(code), chunk_size)]
# # Process each chunk
# for i, chunk in enumerate(code_chunks):
# # Prepare input text
# inputs = tokenizer(chunk, return_tensors="pt")
# # Perform inference
# with torch.no_grad():
# outputs = model(**inputs)
# # Get the predicted labels
# predicted_labels = torch.argmax(outputs.logits, dim=2)
# labels = [model.config.id2label[label_id] for label_id in predicted_labels[0].tolist()]
# # Define a mapping of entity types to placeholders
# entity_mapping = {
# "NAME": "<NAME>",
# "EMAIL": "<EMAIL>",
# "IP_ADDRESS": "<IP_ADDRESS>",
# }
# # Redact entities in the original text
# for token, label in zip(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]), labels):
# if token.startswith("Ġ"):
# last_token_was_special = True
# token = token[1:] # Remove the leading "Ġ" character
# else:
# last_token_was_special = False
# # Add space if the last token was a special token and the current token does not start with "<"
# if last_token_was_special and not token.startswith("<"):
# redacted_text += " "
# if label.startswith("B-"):
# current_entity = label[2:]
# redacted_text += f"{entity_mapping.get(current_entity, current_entity)}"
# elif label.startswith("I-") and current_entity is not None:
# pass # Skip intermediate tokens of the entity
# else:
# current_entity = None
# redacted_text += token
# # Split the redacted text into lines and add indentation
# redacted_lines = redacted_text.split("Ċ")
# formatted_redacted_text = ""
# indentation = 0
# for line in redacted_lines:
# if "{" in line:
# formatted_redacted_text += " " * indentation + line + "\n"
# indentation += 1
# elif "}" in line:
# indentation -= 1
# formatted_redacted_text += " " * indentation + line + "\n"
# else:
# formatted_redacted_text += " " * indentation + line + "\n"
# # Remove any remaining special characters
# formatted_redacted_text = formatted_redacted_text.replace("Ġ", "")
# # # Write the redacted code back to the file using UTF-8 encoding
# # output_code_file = "redacted_code.java"
# # with open(output_code_file, "a", encoding="utf-8") as file:
# # file.write(formatted_redacted_text.strip())
# # Generate the output file name based on the input file name
# output_code_file = os.path.splitext(input_code_file)[0] + "_redacted" + os.path.splitext(input_code_file)[1]
# # Write the redacted code back to the file using UTF-8 encoding
# with open(output_code_file, "w", encoding="utf-8") as file:
# file.write(formatted_redacted_text.strip())
# # Delete the temporary input code file
# os.remove(input_code_file)
# # Print the final redacted text
# print("Redacted Text:", formatted_redacted_text.strip())
# return output_code_file
# def filener(code_content, filename):
# # Load the model and tokenizer from the local directory
# local_model_directory = "privacy/util/code_detect/ner/pii_inference/nermodel"
# model = AutoModelForTokenClassification.from_pretrained(local_model_directory)
# tokenizer = AutoTokenizer.from_pretrained(local_model_directory, model_max_length=10000)
# # Define a chunk size (adjust as needed)
# chunk_size = 1000
# # Initialize the redacted text
# redacted_text = ""
# current_entity = None
# last_token_was_special = False
# # Split the code into chunks
# code_chunks = [code_content[i:i + chunk_size] for i in range(0, len(code_content), chunk_size)]
# # Process each chunk
# for i, chunk in enumerate(code_chunks):
# # Prepare input text
# chunk_str = chunk.decode("utf-8")
# inputs = tokenizer(chunk_str, return_tensors="pt")
# # Perform inference
# with torch.no_grad():
# outputs = model(**inputs)
# # Get the predicted labels
# predicted_labels = torch.argmax(outputs.logits, dim=2)
# labels = [model.config.id2label[label_id] for label_id in predicted_labels[0].tolist()]
# # Define a mapping of entity types to placeholders
# entity_mapping = {
# "NAME": "<NAME>",
# "EMAIL": "<EMAIL>",
# "IP_ADDRESS": "<IP_ADDRESS>",
# }
# # Redact entities in the original text
# for token, label in zip(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]), labels):
# if token.startswith("Ġ"):
# last_token_was_special = True
# token = token[1:] # Remove the leading "Ġ" character
# else:
# last_token_was_special = False
# # Add space if the last token was a special token and the current token does not start with "<"
# if last_token_was_special and not token.startswith("<"):
# redacted_text += " "
# if label.startswith("B-"):
# current_entity = label[2:]
# redacted_text += f"{entity_mapping.get(current_entity, current_entity)}"
# elif label.startswith("I-") and current_entity is not None:
# pass # Skip intermediate tokens of the entity
# else:
# current_entity = None
# redacted_text += token
# # Split the redacted text into lines and add indentation
# redacted_lines = redacted_text.split("Ċ")
# formatted_redacted_text = ""
# indentation = 0
# for line in redacted_lines:
# if "{" in line:
# formatted_redacted_text += " " * indentation + line + "\n"
# indentation += 1
# elif "}" in line:
# indentation -= 1
# formatted_redacted_text += " " * indentation + line + "\n"
# else:
# formatted_redacted_text += " " * indentation + line + "\n"
# # Remove any remaining special characters
# formatted_redacted_text = formatted_redacted_text.replace("Ġ", "")
# formatted_redacted_text = formatted_redacted_text.replace("č", "")
# print("formatted_redacted_text",formatted_redacted_text)
# # Generate the output file name based on the input file name
# output_code_file = os.path.splitext(filename)[0] + "_redacted" + os.path.splitext(filename)[1]
# # Write the redacted code back to the file using UTF-8 encoding
# with open(output_code_file, "w", encoding="utf-8") as file:
# file.write(formatted_redacted_text.strip())
# # Return the redacted text and the output code file name
# return formatted_redacted_text.strip().encode("utf-8"), output_code_file
# def filener(code_content, filename):
# # Load the model and tokenizer from the local directory
# local_model_directory = "privacy/util/code_detect/ner/pii_inference/nermodel"
# model = AutoModelForTokenClassification.from_pretrained(local_model_directory)
# tokenizer = AutoTokenizer.from_pretrained(local_model_directory, model_max_length=10000)
# # Define a chunk size (adjust as needed)
# chunk_size = 1000
# # Initialize the redacted text
# redacted_text = ""
# current_entity = None
# last_token_was_special = False
# # Split the code into chunks
# code_chunks = [code_content[i:i + chunk_size] for i in range(0, len(code_content), chunk_size)]
# # Process each chunk
# for i, chunk in enumerate(code_chunks):
# # Prepare input text
# chunk_str = chunk.decode("utf-8")
# inputs = tokenizer(chunk_str, return_tensors="pt")
# # Perform inference
# with torch.no_grad():
# outputs = model(**inputs)
# # Get the predicted labels
# predicted_labels = torch.argmax(outputs.logits, dim=2)
# labels = [model.config.id2label[label_id] for label_id in predicted_labels[0].tolist()]
# # Define a mapping of entity types to placeholders
# entity_mapping = {
# "NAME": "<NAME>",
# "EMAIL": "<EMAIL>",
# "IP_ADDRESS": "<IP_ADDRESS>"
# }
# # Redact entities in the original text
# for token, label in zip(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]), labels):
# if token.startswith("Ġ"):
# last_token_was_special = True
# token = token[1:] # Remove the leading "Ġ" character
# else:
# last_token_was_special = False
# # Add space if the last token was a special token and the current token does not start with "<"
# if last_token_was_special and not token.startswith("<"):
# redacted_text += " "
# if label.startswith("B-"):
# current_entity = label[2:]
# redacted_text += f"{entity_mapping.get(current_entity, current_entity)}"
# elif label.startswith("I-") and current_entity is not None:
# pass # Skip intermediate tokens of the entity
# else:
# current_entity = None
# redacted_text += token
# # Split the redacted text into lines and add indentation
# redacted_lines = redacted_text.split("Ċ")
# formatted_redacted_text = ""
# indentation = 0
# for line in redacted_lines:
# line = line.strip()
# if line.startswith(" "):
# formatted_line = " " * indentation + line + "\n"
# elif line.startswith("#"):
# formatted_line = " " * indentation + line + "\n"
# else:
# formatted_line = line + "\n"
# # Adjust indentation based on braces
# if "{" in line:
# indentation += 1
# elif "}" in line:
# indentation = max(0, indentation - 1)
# formatted_redacted_text += formatted_line
# # Remove any remaining special characters
# formatted_redacted_text = formatted_redacted_text.replace("Ġ", "")
# formatted_redacted_text = formatted_redacted_text.replace("č", "")
# # Generate the output file name based on the input file name
# output_code_file = os.path.splitext(filename)[0] + "_redacted" + os.path.splitext(filename)[1]
# # Write the formatted redacted code back to the file using UTF-8 encoding
# with open(output_code_file, "w", encoding="utf-8") as file:
# file.write(formatted_redacted_text.strip())
# # Use autopep8 to format the code in-place
# with open(output_code_file, "r", encoding="utf-8") as file:
# code_content = file.read()
# formatted_code = autopep8.fix_code(
# code_content,
# options={
# 'aggressive': 1,
# 'max_line_length': 120, # Adjust this based on your desired line length
# }
# )
# # Write the formatted code back
# with open(output_code_file, "w", encoding="utf-8") as file:
# file.write(formatted_code)
# print("FORMCODE","\n",formatted_code)
# # Return the redacted text and the output code file name
# return formatted_code.encode("utf-8"), output_code_file
def filener(code_content, filename,model,tokenizer):
# Load the model and tokenizer from the local directory
# local_model_directory = "privacy/util/code_detect/ner/pii_inference/nermodel"
# model = AutoModelForTokenClassification.from_pretrained(local_model_directory)
# tokenizer = AutoTokenizer.from_pretrained(local_model_directory, model_max_length=10000)
# Define a chunk size (adjust as needed)
chunk_size = 1000
# Initialize the redacted text
redacted_text = ""
current_entity = None
last_token_was_special = False
# Split the code into chunks
code_chunks = [code_content[i:i + chunk_size] for i in range(0, len(code_content), chunk_size)]
# Process each chunk
for i, chunk in enumerate(code_chunks):
# Prepare input text
chunk_str = chunk.decode("utf-8")
inputs = tokenizer(chunk_str, return_tensors="pt")
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
# Get the predicted labels
predicted_labels = torch.argmax(outputs.logits, dim=2)
labels = [model.config.id2label[label_id] for label_id in predicted_labels[0].tolist()]
# Define a mapping of entity types to placeholders
entity_mapping = {
"USERNAME": "<USERNAME>",
"EMAIL": "<EMAIL>",
"IP_ADDRESS": "<IP_ADDRESS>",
"KEY": "<KEY>",
"NAME": "<NAME>"
}
# Redact entities in the original text
for token, label in zip(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]), labels):
if token.startswith("Ġ"):
last_token_was_special = True
token = token[1:] # Remove the leading "Ġ" character
else:
last_token_was_special = False
# Add space if the last token was a special token and the current token does not start with "<"
if last_token_was_special and not token.startswith("<"):
redacted_text += " "
if label.startswith("B-"):
current_entity = label[2:]
redacted_text += f"{entity_mapping.get(current_entity, current_entity)}"
elif label.startswith("I-") and current_entity is not None:
pass # Skip intermediate tokens of the entity
else:
current_entity = None
redacted_text += token
# Split the redacted text into lines and add indentation
redacted_lines = redacted_text.split("Ċ")
formatted_redacted_text = ""
indentation = 0
for line in redacted_lines:
print("line--",line +"\n")
line = line.strip()
if line.startswith(" "):
formatted_line = " " * indentation + line + "\n"
elif line.startswith('Ġ'):
formatted_line = " " + line + "\n"
elif line.startswith('ĉ'):
formatted_line = " " + line + "\n"
elif line.startswith("#"):
formatted_line = " " * indentation + line + "\n"
else:
formatted_line = " " + line + "\n"
print("--formatted line--",formatted_line)
# Adjust indentation based on braces
if "{" in line:
indentation += 1
elif "}" in line:
indentation = max(0, indentation - 1)
# Check if the line ends with a colon, indicating the start of a block
if line.endswith(":"):
indentation += 1
formatted_redacted_text += formatted_line
# Remove any remaining special characters
formatted_redacted_text = formatted_redacted_text.replace("Ġ", " ")
print("to be removed chars--",formatted_redacted_text)
formatted_redacted_text = formatted_redacted_text.replace("č", " ")
formatted_redacted_text = formatted_redacted_text.replace("ĉ", " ")
redacted_text = formatted_redacted_text.replace("Ċ", " ")
#print("formatted text",formatted_redacted_text)
# Generate the output file name based on the input file name
output_code_file = os.path.splitext(filename)[0] + "_redacted" + os.path.splitext(filename)[1]
# Write the formatted redacted code back to the file using UTF-8 encoding
with open(output_code_file, "w", encoding="utf-8") as file:
file.write(formatted_redacted_text.strip())
# Use autopep8 to format the code in-place
with open(output_code_file, "r", encoding="utf-8") as file:
code_content = file.read()
formatted_code = autopep8.fix_code(
code_content,
options={
'aggressive': 1,
'max_line_length': 120, # Adjust this based on your desired line length
}
)
# Write the formatted code back
with open(output_code_file, "w", encoding="utf-8") as file:
file.write(formatted_code)
# print("FORMATTED CODE","\n", formatted_code)
# Return the redacted text and the output code file name
return formatted_code.encode("utf-8"), output_code_file
## FOR FILE WORKING
# from transformers import AutoModelForTokenClassification, AutoTokenizer
# import torch
# # Load the model and tokenizer from the local directory
# local_model_directory = "./nermodel"
# model = AutoModelForTokenClassification.from_pretrained(local_model_directory)
# tokenizer = AutoTokenizer.from_pretrained(local_model_directory,model_max_length=10000)
# # Specify the input code file
# input_code_file = "input_code.java"
# #input_code_file = "input.py"
# # Read the code from the file
# with open(input_code_file, "r", encoding="utf-8") as file:
# code = file.read()
# # Prepare input text
# inputs = tokenizer(code, return_tensors="pt")
# # print("INPUT IDS",inputs["input_ids"].shape)
# # print("MODEL CONFIG",model.config)
# # print("TOKENIZER",tokenizer)
# # Perform inference
# with torch.no_grad():
# outputs = model(**inputs)
# # Get the predicted labels
# predicted_labels = torch.argmax(outputs.logits, dim=2)
# labels = [model.config.id2label[label_id] for label_id in predicted_labels[0].tolist()]
# # Define a mapping of entity types to placeholders
# entity_mapping = {
# "NAME": "<NAME>",
# "EMAIL": "<EMAIL>",
# "IP_ADDRESS": "<IP_ADDRESS>",
# }
# # Initialize variables
# redacted_text = ""
# current_entity = None
# last_token_was_special = False
# # Redact entities in the original text
# for token, label in zip(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]), labels):
# if token.startswith("Ġ"):
# last_token_was_special = True
# token = token[1:] # Remove the leading "Ġ" character
# else:
# last_token_was_special = False
# # Add space if the last token was a special token and the current token does not start with "<"
# if last_token_was_special and not token.startswith("<"):
# redacted_text += " "
# if label.startswith("B-"):
# current_entity = label[2:]
# redacted_text += f"{entity_mapping.get(current_entity, current_entity)}"
# elif label.startswith("I-") and current_entity is not None:
# pass # Skip intermediate tokens of the entity
# else:
# current_entity = None
# redacted_text += token
# # Split the redacted text into lines and add indentation
# redacted_lines = redacted_text.split("Ċ")
# formatted_redacted_text = ""
# indentation = 0
# for line in redacted_lines:
# if "{" in line:
# formatted_redacted_text += " " * indentation + line + "\n"
# indentation += 1
# elif "}" in line:
# indentation -= 1
# formatted_redacted_text += " " * indentation + line + "\n"
# else:
# formatted_redacted_text += " " * indentation + line + "\n"
# # Remove any remaining special characters
# formatted_redacted_text = formatted_redacted_text.replace("Ġ", "")
# # Write the redacted code back to the file using UTF-8 encoding
# output_code_file = "redacted_code.java"
# #output_code_file = "x.py"
# with open(output_code_file, "w", encoding="utf-8") as file:
# file.write(formatted_redacted_text.strip())
# # Print the redacted text
# print("Redacted Text:", formatted_redacted_text.strip())
|