Kiran5's picture
Track large files and images with Git LFS
54fa0c8
import argparse
import json
import logging
import random
import time
import numpy as np
from functools import partial
from pprint import pformat
from datasets import load_dataset
from datasets.utils.logging import set_verbosity_info
from manual_sharding import save_manual_shards
from utils import get_replacements, redact_pii_batch
REPONAME_TOKEN = "<reponame>"
FILENAME_TOKEN = "<filename>"
STARS_TOKEN = "<gh_stars>"
def get_num_stars_bucket(num_stars: int) -> str:
if num_stars is None or num_stars == 0:
return "0"
elif num_stars <= 10:
return "1-10"
elif num_stars <= 100:
return "10-100"
elif num_stars <= 1000:
return "100-1000"
else:
return "1000+"
def content_with_meta(example):
res = ""
if np.random.binomial(n=1, p=0.2):
res += f"{REPONAME_TOKEN}{example['max_stars_repo_name']}"
if np.random.binomial(n=1, p=0.2):
res += f"{FILENAME_TOKEN}{example['max_stars_repo_path']}"
if np.random.binomial(n=1, p=0.2):
num_stars = get_num_stars_bucket(example["max_stars_count"])
res += f"{STARS_TOKEN}{num_stars}"
if len(res) > 0:
res += "\n"
res += example["content"]
return {"content_with_meta": res}
def parseArgs():
parser = argparse.ArgumentParser(description="PII detection and redaction")
parser.add_argument(
"--dataset_name",
default="bigcode/pii-for-code",
type=str,
help="HF repo name/path of the dataset.",
)
# add arg true add metadata
parser.add_argument(
"--add_metadata",
action="store_true",
help="If set, we add metadata to the text",
)
parser.add_argument(
"--num_load_proc",
default=64,
type=int,
help="Number of processes to use for loading the dataset",
)
parser.add_argument(
"--text_column",
default="content",
type=str,
help="Text column to use, if will be renamed to content",
)
parser.add_argument(
"--split",
default="train",
type=str,
help="Dataset split to process",
)
parser.add_argument(
"--batch_size",
default=100,
type=int,
help="Batch size for the PII detection/redaction",
)
parser.add_argument(
"--seed",
default=0,
type=int,
help="Seed for random",
)
parser.add_argument(
"--num_proc",
default=96,
type=int,
help="Number of processes to use for the PII detection/redaction",
)
parser.add_argument(
"--no_redaction",
action="store_true",
help="If set, we don't perform redaction",
)
parser.add_argument(
"--load_replacements",
default=True,
help="If set, we load the replacements from file replacements.json",
)
parser.add_argument(
"--add_reference_text",
default=True,
type=bool,
help="If True we add the reference text with PII between delimiters \
in the redacted text -used for visualization-",
)
parser.add_argument(
"--check_all_files",
action="store_true",
help="If set, we check all files, not only the ones that contain PII",
)
parser.add_argument(
"--check_sampling_size",
default=0,
type=int,
help="Number of samples to check for PII",
)
# for saving the dataset: either push to HF or save locally with datasets or save manual shards
parser.add_argument(
"--save_mode",
default="manual_shards",
type=str,
choices=["hub", "local", "manual_shards"],
help="How to save the dataset",
)
parser.add_argument(
"--save_mode_checks",
default="hub",
type=str,
choices=["hub", "local", "manual_shards"],
help="How to save the checks dataset",
)
# add argument for name of dataset on the hub
parser.add_argument(
"--target_dataset",
default="bigcode-pii2",
type=str,
help="HF repo name of the target dataset in save_mode=hub.",
)
parser.add_argument(
"--hub_username",
default="loubnabnl",
type=str,
help="Username for the hub",
)
parser.add_argument(
"--save_path_disk",
default="/fsx/loubna/data/the-stack-march-no-pii",
type=str,
help="Path to save the dataset on disk in save_mode=local.",
)
return parser.parse_args()
def get_check_ds(ds, args):
if not args.check_all_files:
ds_checks = ds.filter(
lambda exs: exs["modified"],
batched=True,
batch_size=args.batch_size,
num_proc=args.num_proc,
)
else:
ds_checks = ds
if not args.check_sampling_size:
sampling_size = len(ds_checks)
idx_samples = random.sample(
range(len(ds_checks)), min(len(ds_checks), sampling_size)
)
ds_checks = ds_checks.select(idx_samples)
return ds_checks
def main():
set_verbosity_info()
args = parseArgs()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
handlers=[
logging.FileHandler(f"logs/pii-{args.dataset_name.split('/')[-1]}.log"),
logging.StreamHandler(),
],
)
logger.info(
f"** The job is running with the following arguments: **\n{args}\n **** "
)
logger.info(f" ===== Loading {args.dataset_name} =====")
ds = load_dataset(
args.dataset_name,
split=args.split,
use_auth_token=True,
num_proc=args.num_load_proc,
)
if args.text_column != "content":
ds = ds.rename_column(args.text_column, "content")
# redact PII in the dataset
logger.info(f" ===== Applying PII redaction =====")
random.seed(args.seed)
replacements = get_replacements()
with open("replacements.json", "w") as f:
json.dump(replacements, f)
logging.info(f"Using the following replacements:\n{pformat(replacements)}")
ds = ds.map(
partial(
redact_pii_batch,
replacements=replacements,
add_references=args.add_reference_text,
),
batched=True,
batch_size=args.batch_size,
num_proc=args.num_proc,
)
logging.info(f"Dataset info after PII redaction:\n{ds}")
# check the dataset
logger.info(
f" ===== Checking {args.check_sampling_size} samples from those modified in the dataset ====="
)
ds_checks = get_check_ds(ds, args)
# save checks dataset
if len(ds_checks) == 0:
logger.info("Dataset was empty. Not saving anything.")
else:
logger.info(f"Checks dataset info {ds_checks}")
if args.save_mode_checks == "hub":
logger.info(
f"Pushing the checks dataset to the Hub as {args.target_dataset}_checks"
)
ds_checks.push_to_hub(args.target_dataset + "_checks", private=True)
elif args.save_mode_checks == "local":
logger.info(f"Saving the checks dataset to disk")
ds_checks.save_to_disk(args.save_path_disk + "_checks")
elif args.save_mode_checks == "manual_shards":
logger.info(f"Saving the checks dataset in manual shards")
save_manual_shards(
ds_checks,
user=args.hub_username,
remote_dataset_repo=args.target_dataset + "_checks",
local_dir="/fsx/loubna/data/the-stack-march-no-pii_checks",
)
logger.info("Removing columns that are not needed for the final dataset")
columns = ["content", "modified", "entities"]
if args.add_reference_text:
columns.append("references")
ds = ds.remove_columns(columns)
ds = ds.rename_column("new_content", "content")
logger.info(f"Dataset info after removing columns:\n{ds}")
if args.add_metadata:
logger.info(f" ===== Adding metadata =====")
ds = ds.map(
content_with_meta, remove_columns=["content"], num_proc=args.num_proc
)
ds = ds.rename_column("content_with_meta", "content")
# save the final dataset
if args.save_mode == "hub":
logger.info(
f" ===== Pushing the dataset to the Hub as: {args.target_dataset} ====="
)
ds.push_to_hub(args.target_dataset, private=True)
elif args.save_mode == "local":
logger.info(f" ===== Saving the dataset to disk =====")
ds.save_to_disk(args.save_path_disk)
elif args.save_mode == "manual_shards":
logger.info(
f" ===== Saving the dataset in manual shards to {args.save_path_disk} ====="
)
save_manual_shards(
ds,
user=args.hub_username,
remote_dataset_repo="the-stack-no-pii-march",
local_dir=args.save_path_disk,
)
logger.info(f" ===== Dataset saved successfully =====")
if __name__ == "__main__":
main()