Spaces:
Sleeping
Sleeping
File size: 34,113 Bytes
563c5bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
'''
Copyright 2024 Infosys Ltd.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
'''
from __future__ import annotations
# import logging
from enum import Enum
from typing import List, Iterator, Dict, Callable, Union
from abc import ABC, abstractmethod
import itertools
from ..operations.thought import Thought
from ..language_models import AbstractLanguageModel
from ..prompter import Prompter
from ..parser import Parser
from llm_explain.config.logger import CustomLogger
logging = CustomLogger()
class OperationType(Enum):
"""
Enum to represent different operation types that can be used as unique identifiers.
"""
score: int = 0
validate_and_improve: int = 1
generate: int = 2
improve: int = 3
aggregate: int = 4
keep_best_n: int = 5
keep_valid: int = 6
ground_truth_evaluator: int = 7
selector: int = 8
class Operation(ABC):
"""
Abstract base class that defines the interface for all operations.
"""
_ids: Iterator[int] = itertools.count(0)
operation_type: OperationType = None
def __init__(self) -> None:
"""
Initializes a new Operation instance with a unique id, and empty predecessors and successors.
"""
self.logger = CustomLogger()
self.id: int = next(Operation._ids)
self.predecessors: List[Operation] = []
self.successors: List[Operation] = []
self.executed: bool = False
def can_be_executed(self) -> bool:
"""
Checks if the operation can be executed based on its predecessors.
:return: True if all predecessors have been executed, False otherwise.
:rtype: bool
"""
return all(predecessor.executed for predecessor in self.predecessors)
def get_previous_thoughts(self) -> List[Thought]:
"""
Iterates over all predecessors and aggregates their thoughts.
:return: A list of all thoughts from the predecessors.
:rtype: List[Thought]
"""
previous_thoughts: List[Thought] = [
thought
for predecessor in self.predecessors
for thought in predecessor.get_thoughts()
]
return previous_thoughts
def add_predecessor(self, operation: Operation) -> None:
"""
Add a preceding operation and update the relationships.
:param operation: The operation to be set as a predecessor.
:type operation: Operation
"""
self.predecessors.append(operation)
operation.successors.append(self)
def add_successor(self, operation: Operation) -> None:
"""
Add a succeeding operation and update the relationships.
:param operation: The operation to be set as a successor.
:type operation: Operation
"""
self.successors.append(operation)
operation.predecessors.append(self)
def execute(
self, lm: AbstractLanguageModel, prompter: Prompter, parser: Parser, **kwargs
) -> None:
"""
Execute the operation, assuring that all predecessors have been executed.
:param lm: The language model to be used.
:type lm: AbstractLanguageModel
:param prompter: The prompter for crafting prompts.
:type prompter: Prompter
:param parser: The parser for parsing responses.
:type parser: Parser
:param kwargs: Additional parameters for execution.
:raises AssertionError: If not all predecessors have been executed.
"""
assert self.can_be_executed(), "Not all predecessors have been executed"
# self.logger.info(
# "Executing operation %d of type %s", self.id, self.operation_type
# )
self._execute(lm, prompter, parser, **kwargs)
# self.logger.debug("Operation %d executed", self.id)
self.executed = True
@abstractmethod
def _execute(
self, lm: AbstractLanguageModel, prompter: Prompter, parser: Parser, **kwargs
) -> None:
"""
Abstract method for the actual execution of the operation.
This should be implemented in derived classes.
:param lm: The language model to be used.
:type lm: AbstractLanguageModel
:param prompter: The prompter for crafting prompts.
:type prompter: Prompter
:param parser: The parser for parsing responses.
:type parser: Parser
:param kwargs: Additional parameters for execution.
"""
pass
@abstractmethod
def get_thoughts(self) -> List[Thought]:
"""
Abstract method to retrieve the thoughts associated with the operation.
This should be implemented in derived classes.
:return: List of associated thoughts.
:rtype: List[Thought]
"""
pass
class Score(Operation):
"""
Operation to score thoughts.
"""
operation_type: OperationType = OperationType.score
def __init__(
self,
num_samples: int = 1,
combined_scoring: bool = False,
scoring_function: Callable[
[Union[List[Dict], Dict]], Union[List[float], float]
] = None,
) -> None:
"""
Initializes a new Score operation.
:param num_samples: Number of samples to use for scoring. Defaults to 1.
:type num_samples: int
:param combined_scoring: Whether to score all thoughts together or individually. Defaults to False.
:type combined_scoring: bool
:param scoring_function: A function to score thoughts (if not using LM). Defaults to None.
:type scoring_function: Takes a list of thought states or a single thought state and
returns a list of scores or a single score.
"""
super().__init__()
self.num_samples: int = num_samples
self.combined_scoring: bool = combined_scoring
self.thoughts: List[Thought] = []
self.scoring_function: Callable[
[Union[List[Dict], Dict]], Union[List[float], float]
] = scoring_function
def get_thoughts(self) -> List[Thought]:
"""
Returns the thoughts associated with the operation.
:return: List of scored thoughts.
:rtype: List[Thought]
"""
return self.thoughts
def _execute(
self, lm: AbstractLanguageModel, prompter: Prompter, parser: Parser, **kwargs
) -> None:
"""
Executes the scoring operation by scoring the thoughts from the predecessors.
If combined scoring is used, the thoughts are scored together, otherwise individually.
If a scoring function is provided, it is used, otherwise the LM is prompted.
:param lm: The language model to be used.
:type lm: AbstractLanguageModel
:param prompter: The prompter for crafting prompts.
:type prompter: Prompter
:param parser: The parser for parsing responses.
:type parser: Parser
:param kwargs: Additional parameters for execution.
:raises AssertionError: If operation has no predecessors.
"""
previous_thoughts: List[Thought] = self.get_previous_thoughts()
assert (
len(self.predecessors) > 0
), "Score operation needs at least one predecessor"
if self.combined_scoring:
previous_thoughts_states = [thought.state for thought in previous_thoughts]
if self.scoring_function is not None:
# self.logger.debug(
# "Using scoring function %s to score states", self.scoring_function
# )
scores = self.scoring_function(previous_thoughts_states)
else:
prompt = prompter.score_prompt(previous_thoughts_states)
# self.logger.debug("Prompt for LM: %s", prompt)
responses = lm.get_response_texts(
lm.query(prompt, num_responses=self.num_samples)
)
# self.logger.debug("Responses from LM: %s", responses)
scores = parser.parse_score_answer(previous_thoughts_states, responses)
for thought, score in zip(previous_thoughts, scores):
new_thought = Thought.from_thought(thought)
new_thought.score = score
self.thoughts.append(new_thought)
else:
for thought in previous_thoughts:
new_thought = Thought.from_thought(thought)
if self.scoring_function is not None:
# self.logger.debug(
# "Using scoring function %s to score state",
# self.scoring_function,
# )
score = self.scoring_function(thought.state)
else:
prompt = prompter.score_prompt([thought.state])
# self.logger.debug("Prompt for LM: %s", prompt)
responses = lm.get_response_texts(
lm.query(prompt, num_responses=self.num_samples)
)
# self.logger.debug("Responses from LM: %s", responses)
score = parser.parse_score_answer([thought.state], responses)[0]
new_thought.score = score
self.thoughts.append(new_thought)
# self.logger.debug(
# "Score operation %d scored %d thoughts",
# self.id,
# len(self.thoughts),
# )
class ValidateAndImprove(Operation):
"""
Operation to validate and improve thoughts.
"""
operation_type: OperationType = OperationType.validate_and_improve
def __init__(
self,
num_samples: int = 1,
improve: bool = True,
num_tries: int = 3,
validate_function: Callable[[Dict], bool] = None,
) -> None:
"""
Initializes a new ValidateAndImprove operation.
:param num_samples: Number of samples to use for validation. Defaults to 1.
:type num_samples: int
:param improve: Whether to improve the thought if it is not valid. Defaults to True.
:type improve: bool
:param num_tries: Number of tries to improve the thought before giving up. Defaults to 3.
:type num_tries: int
:param validate_function: A function to validate thoughts (if not using LM). Defaults to None.
:type validate_function: Takes a thought state and returns a boolean.
"""
super().__init__()
self.num_samples: int = num_samples
self.improve: bool = improve
self.num_tries: int = num_tries
self.validate_function: Callable[[Dict], bool] = validate_function
self.thoughts: List[List[Thought]] = []
def get_thoughts(self) -> List[Thought]:
"""
Returns the list of final thoughts, after validation and improvement.
:return: List of final validated and improved thoughts.
:rtype: List[Thought]
"""
return [thought_list[-1] for thought_list in self.thoughts]
def _execute(
self, lm: AbstractLanguageModel, prompter: Prompter, parser: Parser, **kwargs
) -> None:
"""
Executes the ValidateAndImprove operation by validating and improving the predecessors' thoughts.
If a validation function is provided, it is used, otherwise the LM is prompted.
If improvement is enabled, the LM is prompted to improve the thought, if it is not valid.
:param lm: The language model to be used.
:type lm: AbstractLanguageModel
:param prompter: The prompter for crafting prompts.
:type prompter: Prompter
:param parser: The parser for parsing responses.
:type parser: Parser
:param kwargs: Additional parameters for execution.
:raises AssertionError: If operation has no predecessors.
"""
previous_thoughts: List[Thought] = self.get_previous_thoughts()
assert (
len(self.predecessors) > 0
), "ValidateAndImprove operation needs at least one predecessor"
for thought in previous_thoughts:
thought_list = []
current_thought = Thought.from_thought(thought)
current_try = 0
while True:
if self.validate_function is not None:
# self.logger.debug(
# "Using validate function %s to score states",
# self.validate_function,
# )
valid = self.validate_function(current_thought.state)
else:
prompt = prompter.validation_prompt(**current_thought.state)
# self.logger.debug("Prompt for LM: %s", prompt)
responses = lm.get_response_texts(
lm.query(prompt, num_responses=self.num_samples)
)
# self.logger.debug("Responses from LM: %s", responses)
valid = parser.parse_validation_answer(
current_thought.state, responses
)
current_thought.valid = valid
thought_list.append(current_thought)
if (
not self.improve
or current_thought.valid
or current_try >= self.num_tries
):
break
improve_prompt = prompter.improve_prompt(**current_thought.state)
# self.logger.debug("Prompt for LM: %s", improve_prompt)
responses = lm.get_response_texts(
lm.query(improve_prompt, num_responses=1)
)
# self.logger.debug("Responses from LM: %s", responses)
state_update = parser.parse_improve_answer(
current_thought.state, responses
)
current_thought = Thought({**current_thought.state, **state_update})
current_try += 1
self.thoughts.append(thought_list)
# self.logger.debug(
# "Validate and improve operation %d created %d valid thoughts from %d previous thoughts",
# self.id,
# len(
# [
# thought_list[-1]
# for thought_list in self.thoughts
# if thought_list[-1].valid
# ]
# ),
# len(previous_thoughts),
# )
class Generate(Operation):
"""
Operation to generate thoughts.
"""
operation_type: OperationType = OperationType.generate
def __init__(
self, num_branches_prompt: int = 1, num_branches_response: int = 1
) -> None:
"""
Initializes a new Generate operation.
:param num_branches_prompt: Number of responses that each prompt should generate (passed to prompter). Defaults to 1.
:type num_branches_prompt: int
:param num_branches_response: Number of responses the LM should generate for each prompt. Defaults to 1.
:type num_branches_response: int
"""
super().__init__()
self.num_branches_prompt: int = num_branches_prompt
self.num_branches_response: int = num_branches_response
self.thoughts: List[Thought] = []
def get_thoughts(self) -> List[Thought]:
"""
Returns the thoughts associated with the operation.
:return: List of generated thoughts.
:rtype: List[Thought]
"""
return self.thoughts
def _execute(
self, lm: AbstractLanguageModel, prompter: Prompter, parser: Parser, **kwargs
) -> None:
"""
Executes the Generate operation by generating thoughts from the predecessors.
The thoughts are generated by prompting the LM with the predecessors' thought states.
If there are no predecessors, the kwargs are used as a base state.
:param lm: The language model to be used.
:type lm: AbstractLanguageModel
:param prompter: The prompter for crafting prompts.
:type prompter: Prompter
:param parser: The parser for parsing responses.
:type parser: Parser
:param kwargs: Additional parameters for execution.
"""
previous_thoughts: List[Thought] = self.get_previous_thoughts()
if len(previous_thoughts) == 0 and len(self.predecessors) > 0:
return
if len(previous_thoughts) == 0:
# no predecessors, use kwargs as base state
previous_thoughts = [Thought(state=kwargs)]
for thought in previous_thoughts:
base_state = thought.state
prompt = prompter.generate_prompt(self.num_branches_prompt, **base_state)
# self.logger.debug("Prompt for LM: %s", prompt)
responses = lm.get_response_texts(
lm.query(prompt, num_responses=self.num_branches_response)
)
# self.logger.debug("Responses from LM: %s", responses)
for new_state in parser.parse_generate_answer(base_state, responses):
new_state = {**base_state, **new_state}
self.thoughts.append(Thought(new_state))
# self.logger.debug(
# "New thought %d created with state %s",
# self.thoughts[-1].id,
# self.thoughts[-1].state,
# )
if (
len(self.thoughts)
> self.num_branches_prompt
* self.num_branches_response
* len(previous_thoughts)
and self.num_branches_prompt > 0
):
self.logger.warning(
"Generate operation %d created more thoughts than expected",
self.id,
)
# self.logger.debug(
# "Generate operation %d created %d new thoughts", self.id, len(self.thoughts)
# )
class Improve(Operation):
"""
Operation to improve thoughts.
"""
operation_type: OperationType = OperationType.improve
def __init__(self) -> None:
"""
Initializes a new Improve operation.
"""
super().__init__()
self.thoughts: List[Thought] = []
def get_thoughts(self) -> List[Thought]:
"""
Returns the thoughts associated with the operation after improvement.
:return: List of improved thoughts.
:rtype: List[Thought]
"""
return self.thoughts
def _execute(
self, lm: AbstractLanguageModel, prompter: Prompter, parser: Parser, **kwargs
) -> None:
"""
Executes the Improve operation by improving the predecessors' thoughts.
The thoughts are improved by prompting the LM with the predecessors' thought states.
:param lm: The language model to be used.
:type lm: AbstractLanguageModel
:param prompter: The prompter for crafting prompts.
:type prompter: Prompter
:param parser: The parser for parsing responses.
:type parser: Parser
:param kwargs: Additional parameters for execution.
:raises AssertionError: If operation has no predecessors.
"""
previous_thoughts: List[Thought] = self.get_previous_thoughts()
assert len(self.predecessors) > 0, "Needs at least one predecessor"
for thought in previous_thoughts:
improve_prompt = prompter.improve_prompt(**thought.state)
# self.logger.debug("Prompt for LM: %s", improve_prompt)
responses = lm.get_response_texts(lm.query(improve_prompt, num_responses=1))
# self.logger.debug("Responses from LM: %s", responses)
state_update = parser.parse_improve_answer(thought.state, responses)
self.thoughts.append(Thought({**thought.state, **state_update}))
# self.logger.debug(
# "Improve operation %d improved %d thoughts", self.id, len(self.thoughts)
# )
class Aggregate(Operation):
"""
Operation to aggregate thoughts.
"""
operation_type: OperationType = OperationType.aggregate
def __init__(self, num_responses: int = 1) -> None:
"""
Initializes a new Aggregate operation.
:param num_responses: Number of responses to use for aggregation. Defaults to 1.
:type num_responses: int
"""
super().__init__()
self.thoughts: List[Thought] = []
self.num_responses: int = num_responses
def get_thoughts(self) -> List[Thought]:
"""
Returns the thoughts associated with the operation after aggregation.
:return: List of aggregated thoughts.
:rtype: List[Thought]
"""
return self.thoughts
def _execute(
self, lm: AbstractLanguageModel, prompter: Prompter, parser: Parser, **kwargs
) -> None:
"""
Executes the Aggregate operation by aggregating the predecessors' thoughts.
The thoughts are aggregated by prompting the LM with the predecessors' thought states.
:param lm: The language model to be used.
:type lm: AbstractLanguageModel
:param prompter: The prompter for crafting prompts.
:type prompter: Prompter
:param parser: The parser for parsing responses.
:type parser: Parser
:param kwargs: Additional parameters for execution.
:raises AssertionError: If operation has no predecessors.
"""
assert (
len(self.predecessors) >= 1
), "Aggregate operation must have at least one predecessor"
previous_thoughts: List[Thought] = self.get_previous_thoughts()
if len(previous_thoughts) == 0:
return
# applied in order of score
base_state: Dict = {}
for thought in sorted(previous_thoughts, key=lambda thought: thought.score):
base_state = {**base_state, **thought.state}
previous_thought_states = [thought.state for thought in previous_thoughts]
prompt = prompter.aggregation_prompt(previous_thought_states)
# self.logger.debug("Prompt for LM: %s", prompt)
responses = lm.get_response_texts(
lm.query(prompt, num_responses=self.num_responses)
)
# self.logger.debug("Responses from LM: %s", responses)
parsed = parser.parse_aggregation_answer(previous_thought_states, responses)
if isinstance(parsed, dict):
parsed = [parsed]
for new_state in parsed:
self.thoughts.append(Thought({**base_state, **new_state}))
class KeepBestN(Operation):
"""
Operation to keep the best N thoughts from predecessors based on their score.
"""
operation_type: OperationType = OperationType.keep_best_n
def __init__(self, n: int, higher_is_better: bool = True) -> None:
"""
Initializes a new KeepBestN operation.
:param n: Maximum number of thoughts to keep.
:type n: int
:param higher_is_better: Whether higher scores are better. Defaults to True.
:type higher_is_better: bool
:raises AssertionError: If `n` is not greater than zero.
"""
super().__init__()
self.n: int = n
assert self.n > 0, "KeepBestN operation must keep at least one thought"
self.higher_is_better: bool = higher_is_better
self.thoughts: List[Thought] = []
def get_best_n(self) -> List[Thought]:
"""
Returns the best N thoughts from the predecessors based on their score.
:return: List of best N thoughts.
:rtype: List[Thought]
:raises AssertionError: If not all predecessors have been executed.
:raises AssertionError: If not all thoughts have been scored.
"""
previous_thoughts: List[Thought] = self.get_previous_thoughts()
assert all(
previous_thought.scored for previous_thought in previous_thoughts
), "Not all thoughts have been scored"
try:
return sorted(
previous_thoughts,
key=lambda thought: thought.score,
reverse=self.higher_is_better,
)[: self.n]
except:
self.logger.error("Error in KeepBestN operation")
self.logger.error(
"Previous operation: %s", [op.id for op in self.predecessors]
)
self.logger.error("Previous thoughts: %s", previous_thoughts)
self.logger.error(
"Scores: %s", [thought.score for thought in previous_thoughts]
)
return sorted(
[i for i in previous_thoughts if isinstance(i.score, float)],
key=lambda thought: thought.score,
reverse=self.higher_is_better,
)[: self.n]
def get_thoughts(self) -> List[Thought]:
"""
Returns the thoughts kept by the operation.
:return: List of kept thoughts.
:rtype: List[Thought]
"""
return self.thoughts
def _execute(
self, lm: AbstractLanguageModel, prompter: Prompter, parser: Parser, **kwargs
) -> None:
"""
Executes the KeepBestN operation by keeping the best N thoughts from the predecessors according to their score.
:param lm: The language model to be used.
:type lm: AbstractLanguageModel
:param prompter: The prompter for crafting prompts.
:type prompter: Prompter
:param parser: The parser for parsing responses.
:type parser: Parser
:param kwargs: Additional parameters for execution.
:raises AssertionError: If operation has no predecessors.
:raises AssertionError: If not all predecessors have been executed.
:raises AssertionError: If not all thoughts have been scored.
"""
assert (
len(self.predecessors) >= 1
), "KeepBestN operation must have at least one predecessor"
self.thoughts = [Thought.from_thought(thought) for thought in self.get_best_n()]
# for thought in self.thoughts:
# self.logger.debug(
# "Thought %d with state %s kept", thought.id, thought.state
# )
# self.logger.debug(
# "KeepBestN operation %d kept %d thoughts", self.id, len(self.thoughts)
# )
class KeepValid(Operation):
"""
Operation to keep valid thoughts from predecessors.
"""
operation_type: OperationType = OperationType.keep_valid
def __init__(self) -> None:
"""
Initializes a new KeepValid operation.
"""
super().__init__()
self.thoughts: List[Thought] = []
def get_thoughts(self) -> List[Thought]:
"""
Returns the thoughts kept by the operation.
:return: List of kept thoughts.
:rtype: List[Thought]
"""
return self.thoughts
def _execute(
self, lm: AbstractLanguageModel, prompter: Prompter, parser: Parser, **kwargs
) -> None:
"""
Executes the KeepValid operation by keeping the valid thoughts from the predecessors.
Keeps unvalidated thoughts as well.
:param lm: The language model to be used.
:type lm: AbstractLanguageModel
:param prompter: The prompter for crafting prompts.
:type prompter: Prompter
:param parser: The parser for parsing responses.
:type parser: Parser
:param kwargs: Additional parameters for execution.
:raises AssertionError: If operation has no predecessors.
"""
assert (
len(self.predecessors) >= 1
), "KeepValid operation must have at least one predecessor"
self.thoughts: List[Thought] = [
Thought.from_thought(thought)
for thought in self.get_previous_thoughts()
if not thought.validated or thought.valid
]
# if any(not thought.validated for thought in self.thoughts):
# self.logger.warning(
# "KeepValid operation %d has unvalidated thoughts", self.id
# )
# for thought in self.thoughts:
# self.logger.debug(
# "Thought %d with state %s kept", thought.id, thought.state
# )
# self.logger.debug(
# "KeepValid operation %d kept %d thoughts", self.id, len(self.thoughts)
# )
class GroundTruth(Operation):
"""
Operation to evaluate if thoughts correctly solve the problem, using a ground truth evaluator
"""
operation_type: OperationType = OperationType.ground_truth_evaluator
def __init__(self, ground_truth_evaluator: Callable[[Dict], bool]) -> None:
"""
Initializes a new GroundTruth operation.
:param ground_truth_evaluator: A function to evaluate if a thought solves the problem.
:type ground_truth_evaluator: A function that takes a thought state and returns a boolean.
"""
super().__init__()
self.ground_truth_evaluator: Callable[[Dict], bool] = ground_truth_evaluator
self.thoughts: List[Thought] = []
def get_thoughts(self) -> List[Thought]:
"""
Returns the thoughts associated with the operation.
:return: List of evaluated thoughts.
:rtype: List[Thought]
"""
return self.thoughts
def _execute(
self, lm: AbstractLanguageModel, prompter: Prompter, parser: Parser, **kwargs
) -> None:
"""
Executes the GroundTruth operation by evaluating the predecessors' thoughts using the ground truth evaluator function.
:param lm: The language model to be used.
:type lm: AbstractLanguageModel
:param prompter: The prompter for crafting prompts.
:type prompter: Prompter
:param parser: The parser for parsing responses.
:type parser: Parser
:param kwargs: Additional parameters for execution.
:raises AssertionError: If operation has no predecessor.
"""
assert (
len(self.predecessors) >= 1
), "GroundTruth operation must have at least one predecessor"
previous_thoughts: List[Thought] = self.get_previous_thoughts()
for thought in previous_thoughts:
new_thought = Thought.from_thought(thought)
try:
new_thought.solved = self.ground_truth_evaluator(new_thought.state)
except:
new_thought.solved = False
self.thoughts.append(new_thought)
# self.logger.debug(
# "GroundTruth operation %d evaluated %d thoughts and %d solved the problem",
# self.id,
# len(self.thoughts),
# len([thought for thought in self.thoughts if thought.solved]),
# )
class Selector(Operation):
"""
Operation to select thoughts from predecessors.
Useful for separating thoughts to perform different, subsequent operations on them.
"""
operation_type: OperationType = OperationType.selector
def __init__(self, selector: Callable[[List[Thought]], List[Thought]]) -> None:
"""
Initializes a new Selector operation.
:param selector: A function to select thoughts from the predecessors' thoughts.
:type selector: A function that takes a list of thoughts and returns a list of thoughts.
"""
super().__init__()
self.selector: Callable[[List[Thought]], List[Thought]] = selector
self.thoughts: List[Thought] = []
def get_thoughts(self) -> List[Thought]:
"""
Returns the thoughts selected by the operation.
:return: List of selected thoughts.
:rtype: List[Thought]
"""
return self.thoughts
def _execute(
self, lm: AbstractLanguageModel, prompter: Prompter, parser: Parser, **kwargs
) -> None:
"""
Executes the Selector operation by selecting thoughts from the predecessors using the selector function.
If the Selector has no predecessors, the selector function is called with a thought containing the kwargs as state.
:param lm: The language model to be used.
:type lm: AbstractLanguageModel
:param prompter: The prompter for crafting prompts.
:type prompter: Prompter
:param parser: The parser for parsing responses.
:type parser: Parser
:param kwargs: Additional parameters for execution.
"""
previous_thoughts: List[Thought] = self.get_previous_thoughts()
if len(previous_thoughts) == 0:
previous_thoughts = [Thought(kwargs)]
self.thoughts = [
Thought.from_thought(thought)
for thought in self.selector(previous_thoughts)
]
# for thought in self.thoughts:
# self.logger.debug(
# "Thought %d with state %s selected", thought.id, thought.state
# )
# self.logger.debug(
# "Selector operation %d selected %d thoughts", self.id, len(self.thoughts)
# )
|