Kiran5's picture
Add application file
563c5bc
'''
Copyright 2024 Infosys Ltd.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
'''
from llm_explain.config.logger import CustomLogger
from sklearn.metrics.pairwise import cosine_similarity
from matplotlib import pyplot as plt
from openai import AzureOpenAI
from tenacity import retry
from tqdm import tqdm
import pandas as pd
import numpy as np
import asyncio
import base64
import os
import io
from dotenv import load_dotenv
load_dotenv()
log = CustomLogger()
class Utils:
client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT")
)
def normalize_vector(v):
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
def display_metrics(uncertainty_scores, completions, n):
try:
results = {}
structural_uncertainty = np.mean([np.mean(x) for x in uncertainty_scores['entropies']])
conceptual_uncertainty = (0.5*uncertainty_scores['mean_choice_distance']) + (0.5*np.mean([np.mean(x) for x in uncertainty_scores['distances']]))
results["overall_cosine_distance"] = uncertainty_scores['mean_choice_distance']
results["Overall_Structural_Uncertainty"] = structural_uncertainty
results["Overall_Conceptual_Uncertainty"] = conceptual_uncertainty
results["choices"] = []
for i in range(n):
choice = {}
choice_text = completions['choices'][i]['text']
entropies = uncertainty_scores['entropies'][i]
distances = uncertainty_scores['distances'][i]
logprobs = completions['choices'][i]['logprobs']['top_logprobs']
mean_entropy = np.mean(entropies)
mean_distance = np.mean(distances)
choice["mean_entropy"] = mean_entropy
choice["mean_distance"] = mean_distance
tokens = completions['choices'][i]['logprobs']['tokens']
fixed_spacing = 1
x_positions = [0]
for j in range(1, len(tokens)):
x_positions.append(x_positions[-1] + len(tokens[j-1]) + fixed_spacing)
df = pd.DataFrame({
'x': x_positions,
'y_text': [1]*len(tokens),
'y_entropy': [1.2 + entropy for entropy in entropies],
'y_distance': [1.2 + dist for dist in distances],
'tokens': tokens,
'logprobs': ['\n'.join([f"{k}: {v}" for k, v in lp.items()]) for lp in logprobs],
'entropy': entropies,
'distance': distances,
})
plt.figure(figsize=(10, 6))
plt.title(f"Choice {i+1}")
plt.plot(df['x'], df['y_entropy'], label='Entropy', color='blue')
plt.plot(df['x'], df['y_distance'], label='Distance', color='red')
plt.xlabel('Token Position')
plt.ylabel('Normalization value')
plt.legend()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img_base64 = base64.b64encode(buf.read()).decode('utf-8')
choice["plot_image_base64"] = img_base64
choice['response'] = choice_text
results["choices"].append(choice)
return results
except Exception as e:
log.error(e,exc_info=True)
raise
def calculate_normalized_entropy(logprobs):
"""
Calculate the normalized entropy of a list of log probabilities.
Parameters:
logprobs (list): List of log probabilities.
Returns:
float: Normalized entropy.
"""
try:
entropy = -np.sum(np.exp(logprobs) * logprobs)
# Calculate maximum possible entropy for N tokens sampled
N = len(logprobs)
max_entropy = np.log(N)
# Normalize the entropy
normalized_entropy = entropy/max_entropy
return normalized_entropy
except Exception as e:
log.error(e,exc_info=True)
raise
async def process_token_async(i, top_logprobs_list, choice, choice_embedding, max_tokens):
"""
Asynchronously process a token to calculate its normalized entropy and mean cosine distance.
Parameters:
i (int): Token index.
top_logprobs_list (list): List of top log probabilities for each token.
choice (dict): The choice containing log probabilities and tokens.
choice_embedding (array): Embedding of the full choice.
max_tokens (int or None): Maximum number of tokens to consider for the partial string.
Returns:
tuple: Mean cosine distance and normalized entropy for the token.
"""
try:
top_logprobs = top_logprobs_list[i]
normalized_entropy = Utils.calculate_normalized_entropy(list(top_logprobs.values()))
tasks = []
# Loop through each sampled token to construct partial strings and calculate embeddings
for sampled_token in top_logprobs:
tokens_to_use = choice['logprobs']['tokens'][:i] + [sampled_token]
# Limit the number of tokens in the partial string if max_tokens is specified
if max_tokens is not None and len(tokens_to_use) > max_tokens:
tokens_to_use = tokens_to_use[-max_tokens:]
constructed_string = ''.join(tokens_to_use)
task = Utils.get_embedding(constructed_string)
tasks.append(task)
embeddings = await asyncio.gather(*tasks)
cosine_distances = []
# Calculate cosine distances between embeddings of partial strings and the full choice
for new_embedding in embeddings:
cosine_sim = cosine_similarity(new_embedding.reshape(1, -1), choice_embedding.reshape(1, -1))[0][0]
cosine_distances.append(1 - cosine_sim)
mean_distance = np.mean(cosine_distances)
return mean_distance, normalized_entropy
except Exception as e:
log.error(e,exc_info=True)
raise
def decoded_tokens(string, tokenizer):
return [tokenizer.decode([x]) for x in tokenizer.encode(string)]
def scale_importance_log(importance_scores, base=None, offset=0.0, min_percentile=0, max_percentile=100, smoothing_constant=1e-10, scaling_factor=1.0, bias=0.0):
# Extract the importance values
try:
importance_values = np.array([score[1] for score in importance_scores])
# Apply optional percentile-based clipping
if min_percentile > 0 or max_percentile < 100:
min_val = np.percentile(importance_values, min_percentile)
max_val = np.percentile(importance_values, max_percentile)
importance_values = np.clip(importance_values, min_val, max_val)
# Subtract the minimum value and add the optional offset
importance_values = importance_values - np.min(importance_values) + offset
# Add smoothing constant to ensure non-zero values
importance_values += smoothing_constant
# Apply logarithmic scaling, with an optional base
scaled_values = np.log(importance_values) if base is None else np.log(importance_values) / np.log(base)
# Apply scaling factor and bias
scaled_values = scaling_factor * scaled_values + bias
# Normalize to the range [0, 1]
scaled_values = (scaled_values - np.min(scaled_values)) / (np.max(scaled_values) - np.min(scaled_values))
# Pair the scaled values with the original tokens
scaled_importance_scores = [(token, scaled_value) for token, scaled_value in zip([score[0] for score in importance_scores], scaled_values)]
return scaled_importance_scores
except Exception as e:
log.error(e,exc_info=True)
raise
@retry
async def get_embedding(input_text):
try:
response = Utils.client.embeddings.create(
input = input_text,
model= "text-embedding-ada-002",
timeout= 4.0
)
return np.array(response.data[0].embedding)
except Exception as e:
log.error(e,exc_info=True)
raise
async def approximate_importance(perturbed_text, original_embedding, model=None, tokenizer=None):
try:
perturbed_embedding = await Utils.get_embedding(perturbed_text)
cosine_dist = 1 - cosine_similarity(original_embedding.reshape(1, -1), perturbed_embedding.reshape(1, -1))[0][0]
return cosine_dist
except Exception as e:
log.error(e,exc_info=True)
raise
async def ablated_relative_importance(input_text, tokenizer, model=None,):
try:
original_embedding = await Utils.get_embedding(input_text)
tokens = Utils.decoded_tokens(input_text, tokenizer)
importance_scores = []
with tqdm(total=len(tokens), desc="Calculating Token Importances", position=0, leave=True) as progress:
for i in range(len(tokens)):
if len(tokens[i]) < 4:
continue
perturbed_text = "".join(tokens[:i] + tokens[i+1:])
importance = await Utils.approximate_importance(perturbed_text, original_embedding, model, tokenizer)
importance_scores.append((tokens[i], importance))
progress.update(1)
return importance_scores
except Exception as e:
log.error(e,exc_info=True)
raise
def get_price_details(model: str):
'''
Returns price per tokens of the model.
Parameters:
model (str): Model name (Ex: gpt-4)
'''
prompt_price_per_1000_tokens = {
"gpt-4o": 0.0050,
"gpt-35-turbo": 0.0005,
"gpt-35-turbo-instruct": 0.0015,
"gpt4": 0.0300
}
response_price_per_1000_tokens = {
"gpt-4o": 0.0150,
"gpt-35-turbo": 0.0015,
"gpt-35-turbo-instruct": 0.0020,
"gpt4": 0.0600
}
try:
return prompt_price_per_1000_tokens[model], response_price_per_1000_tokens[model]
except KeyError:
raise ValueError(f"Model '{model}' is not found in the pricing details. Only gpt-4o, gpt-35-turbo, gpt-35-turbo-instruct & gpt4 are available. Please contact administrator")
def get_token_cost(input_tokens: int, output_tokens: int, model: str):
'''
Calculates the total cost for tokens.
Parameters:
tokens (int): Total token (Prompt tokens + Completion tokens)
model (str): Model name (Ex: gpt4)
'''
# Example pricing (this should be replaced with actual pricing from Azure documentation)
prompt_price_per_1000_tokens, response_price_per_1000_tokens = Utils.get_price_details(model)
# Calculate cost
total_cost = ((input_tokens / 1000) * prompt_price_per_1000_tokens) + ((output_tokens / 1000) * response_price_per_1000_tokens)
return {
"total_cost": total_cost
}