sql / app.py
Kiranontimitta's picture
Create app.py
089fc67 verified
raw
history blame
1.96 kB
import streamlit as st
import openai
import pandas as pd
from sqlalchemy import create_engine
from langchain.chat_models import ChatOpenAI
from langchain.utilities.sql_database import SQLDatabase
from langchain.tools.sql.toolkit import SQLDatabaseToolkit
# Set OpenAI API Key
openai.api_key = "sk-O7esHSo2XAWm-GXUGXp7_P9l4qXrQMn0CIGzs34ojLT3BlbkFJeXGSSvywppRTAvyT0zZkmZLZsj5cg7XkAkBTh8ZxoA"
# Database connection
DATABASE_URL = "sqlite:///Sakila.db" # Replace with your DB path or connection string
engine = create_engine(DATABASE_URL)
# Set up LangChain components
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.5) # OpenAI's Chat model for LLM
db = SQLDatabase(engine) # Connect LangChain to the database
toolkit = SQLDatabaseToolkit(llm=llm, db=db) # Create the SQL toolkit
# Streamlit UI setup
st.title("SQL Data Chatbot with LangChain")
st.write("Ask questions about the data, and I will answer them with both a response and an SQL query.")
# Input field for the user question
user_question = st.text_input("Your question:")
# Process the question if provided
if user_question:
# Generate the SQL query and answer using the toolkit
try:
# Execute the question through the SQL toolkit
answer = toolkit.query(user_question)
# Display the generated SQL query and answer
st.subheader("Generated SQL Query")
st.code(answer.query, language="sql")
# Display the generated answer
st.subheader("Answer")
st.write(answer.result)
# Execute the SQL query to get results
with engine.connect() as conn:
result_df = pd.read_sql_query(answer.query, conn)
# Show query results if any
if not result_df.empty:
st.write("Query Results:")
st.write(result_df)
else:
st.write("No results found for this query.")
except Exception as e:
st.write(f"Error processing the query: {e}")