Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import pandas as pd
|
|
4 |
from sqlalchemy import create_engine
|
5 |
from langchain.chat_models import ChatOpenAI
|
6 |
from langchain.utilities.sql_database import SQLDatabase
|
7 |
-
from langchain.
|
8 |
|
9 |
# Set OpenAI API Key
|
10 |
openai.api_key = "sk-O7esHSo2XAWm-GXUGXp7_P9l4qXrQMn0CIGzs34ojLT3BlbkFJeXGSSvywppRTAvyT0zZkmZLZsj5cg7XkAkBTh8ZxoA"
|
@@ -16,7 +16,7 @@ engine = create_engine(DATABASE_URL)
|
|
16 |
# Set up LangChain components
|
17 |
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.5) # OpenAI's Chat model for LLM
|
18 |
db = SQLDatabase(engine) # Connect LangChain to the database
|
19 |
-
|
20 |
|
21 |
# Streamlit UI setup
|
22 |
st.title("SQL Data Chatbot with LangChain")
|
@@ -27,22 +27,18 @@ user_question = st.text_input("Your question:")
|
|
27 |
|
28 |
# Process the question if provided
|
29 |
if user_question:
|
30 |
-
# Generate the SQL query and answer using the
|
31 |
try:
|
32 |
-
# Execute the question through the SQL
|
33 |
-
|
34 |
|
35 |
# Display the generated SQL query and answer
|
36 |
-
st.subheader("Generated SQL Query")
|
37 |
-
st.
|
38 |
-
|
39 |
-
# Display the generated answer
|
40 |
-
st.subheader("Answer")
|
41 |
-
st.write(answer.result)
|
42 |
|
43 |
# Execute the SQL query to get results
|
44 |
with engine.connect() as conn:
|
45 |
-
result_df = pd.read_sql_query(
|
46 |
|
47 |
# Show query results if any
|
48 |
if not result_df.empty:
|
|
|
4 |
from sqlalchemy import create_engine
|
5 |
from langchain.chat_models import ChatOpenAI
|
6 |
from langchain.utilities.sql_database import SQLDatabase
|
7 |
+
from langchain.chains import SQLDatabaseChain
|
8 |
|
9 |
# Set OpenAI API Key
|
10 |
openai.api_key = "sk-O7esHSo2XAWm-GXUGXp7_P9l4qXrQMn0CIGzs34ojLT3BlbkFJeXGSSvywppRTAvyT0zZkmZLZsj5cg7XkAkBTh8ZxoA"
|
|
|
16 |
# Set up LangChain components
|
17 |
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.5) # OpenAI's Chat model for LLM
|
18 |
db = SQLDatabase(engine) # Connect LangChain to the database
|
19 |
+
sql_chain = SQLDatabaseChain.from_llm(llm, database=db) # Create the SQL chain
|
20 |
|
21 |
# Streamlit UI setup
|
22 |
st.title("SQL Data Chatbot with LangChain")
|
|
|
27 |
|
28 |
# Process the question if provided
|
29 |
if user_question:
|
30 |
+
# Generate the SQL query and answer using the SQL chain
|
31 |
try:
|
32 |
+
# Execute the question through the SQL chain
|
33 |
+
response = sql_chain.run(user_question)
|
34 |
|
35 |
# Display the generated SQL query and answer
|
36 |
+
st.subheader("Generated SQL Query and Answer")
|
37 |
+
st.write(response)
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Execute the SQL query to get results
|
40 |
with engine.connect() as conn:
|
41 |
+
result_df = pd.read_sql_query(response.query, conn)
|
42 |
|
43 |
# Show query results if any
|
44 |
if not result_df.empty:
|