Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,35 @@
|
|
1 |
import os
|
2 |
-
import streamlit as st
|
3 |
import torch
|
4 |
-
import
|
5 |
from groq import Groq
|
6 |
from diffusers import AutoPipelineForText2Image
|
7 |
-
from io import BytesIO
|
8 |
|
9 |
# Load API keys
|
10 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
11 |
HF_API_KEY = os.getenv("HF_API_KEY")
|
12 |
|
13 |
-
# Initialize Groq client
|
14 |
client = Groq(api_key=GROQ_API_KEY)
|
15 |
|
16 |
-
#
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
-
|
19 |
-
|
20 |
-
# Function to transcribe Tamil audio using Groq's Whisper
|
21 |
-
def transcribe(audio_bytes):
|
22 |
-
if not audio_bytes:
|
23 |
-
return "No audio provided."
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
|
|
32 |
transcription = client.audio.transcriptions.create(
|
33 |
-
file=file,
|
34 |
model="whisper-large-v3",
|
35 |
-
language="ta",
|
36 |
response_format="verbose_json"
|
37 |
)
|
38 |
-
|
39 |
-
# Cleanup temp file
|
40 |
-
os.remove(temp_audio_path)
|
41 |
-
|
42 |
return transcription["text"]
|
43 |
|
44 |
# Function to translate Tamil to English using Groq's Gemma
|
@@ -63,35 +54,31 @@ def generate_image(prompt):
|
|
63 |
return img
|
64 |
|
65 |
# Streamlit UI
|
66 |
-
st.title("
|
67 |
-
|
68 |
-
# Upload audio file
|
69 |
-
audio_file = st.file_uploader("Upload a Tamil audio file", type=["wav", "mp3"])
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
# Read audio bytes
|
74 |
-
audio_bytes = audio_file.read()
|
75 |
-
|
76 |
-
# Process Steps
|
77 |
-
tamil_text = transcribe(audio_bytes)
|
78 |
-
english_text = translate_text(tamil_text)
|
79 |
-
story = generate_text(english_text)
|
80 |
-
image = generate_image(english_text)
|
81 |
-
|
82 |
-
# Display Outputs
|
83 |
-
st.subheader("๐ Transcribed Tamil Text")
|
84 |
-
st.write(tamil_text)
|
85 |
-
|
86 |
-
st.subheader("๐ Translated English Text")
|
87 |
-
st.write(english_text)
|
88 |
-
|
89 |
-
st.subheader("๐ Generated Story")
|
90 |
-
st.write(story)
|
91 |
-
|
92 |
-
st.subheader("๐ผ๏ธ Generated Image")
|
93 |
-
st.image(image, caption="Generated Image from Story")
|
94 |
-
|
95 |
-
else:
|
96 |
-
st.warning("โ ๏ธ Please upload an audio file before generating.")
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
import torch
|
3 |
+
import streamlit as st
|
4 |
from groq import Groq
|
5 |
from diffusers import AutoPipelineForText2Image
|
|
|
6 |
|
7 |
# Load API keys
|
8 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
9 |
HF_API_KEY = os.getenv("HF_API_KEY")
|
10 |
|
11 |
+
# Initialize Groq client with API key
|
12 |
client = Groq(api_key=GROQ_API_KEY)
|
13 |
|
14 |
+
# Select device (GPU if available, else CPU)
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
st.write(f"Using device: {device}") # Display device info
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Load lightweight Hugging Face image generation model
|
19 |
+
image_gen = AutoPipelineForText2Image.from_pretrained(
|
20 |
+
"stabilityai/sdxl-turbo", use_auth_token=HF_API_KEY
|
21 |
+
)
|
22 |
+
image_gen.to(device)
|
23 |
|
24 |
+
# Function to transcribe Tamil audio using Groq's Whisper
|
25 |
+
def transcribe(audio_file):
|
26 |
+
with open(audio_file, "rb") as file:
|
27 |
transcription = client.audio.transcriptions.create(
|
28 |
+
file=(audio_file, file.read()),
|
29 |
model="whisper-large-v3",
|
30 |
+
language="ta", # Tamil
|
31 |
response_format="verbose_json"
|
32 |
)
|
|
|
|
|
|
|
|
|
33 |
return transcription["text"]
|
34 |
|
35 |
# Function to translate Tamil to English using Groq's Gemma
|
|
|
54 |
return img
|
55 |
|
56 |
# Streamlit UI
|
57 |
+
st.title("Tamil Speech to Image & Story Generator")
|
|
|
|
|
|
|
58 |
|
59 |
+
# File uploader for audio
|
60 |
+
uploaded_audio = st.file_uploader("Upload your Tamil speech", type=["wav", "mp3", "m4a"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
if uploaded_audio is not None:
|
63 |
+
st.audio(uploaded_audio, format="audio/wav")
|
64 |
+
|
65 |
+
if st.button("Generate"):
|
66 |
+
with st.spinner("Transcribing..."):
|
67 |
+
tamil_text = transcribe(uploaded_audio)
|
68 |
+
st.success("Transcription complete!")
|
69 |
+
st.text_area("Tamil Text Output", tamil_text)
|
70 |
+
|
71 |
+
with st.spinner("Translating to English..."):
|
72 |
+
english_text = translate_text(tamil_text)
|
73 |
+
st.success("Translation complete!")
|
74 |
+
st.text_area("Translated English Text", english_text)
|
75 |
+
|
76 |
+
with st.spinner("Generating story..."):
|
77 |
+
story = generate_text(english_text)
|
78 |
+
st.success("Story generation complete!")
|
79 |
+
st.text_area("Generated Story", story)
|
80 |
+
|
81 |
+
with st.spinner("Generating image..."):
|
82 |
+
image = generate_image(english_text)
|
83 |
+
st.success("Image generation complete!")
|
84 |
+
st.image(image, caption="Generated Image")
|