Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,8 @@ import torch
|
|
3 |
import streamlit as st
|
4 |
from groq import Groq
|
5 |
from diffusers import AutoPipelineForText2Image
|
|
|
|
|
6 |
|
7 |
# Load API keys
|
8 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
@@ -11,21 +13,17 @@ HF_API_KEY = os.getenv("HF_API_KEY")
|
|
11 |
# Initialize Groq client with API key
|
12 |
client = Groq(api_key=GROQ_API_KEY)
|
13 |
|
14 |
-
# Select device (GPU if available, else CPU)
|
15 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
-
st.write(f"Using device: {device}") # Display device info
|
17 |
-
|
18 |
# Load lightweight Hugging Face image generation model
|
19 |
image_gen = AutoPipelineForText2Image.from_pretrained(
|
20 |
"stabilityai/sdxl-turbo", use_auth_token=HF_API_KEY
|
21 |
)
|
22 |
-
image_gen.to(
|
23 |
|
24 |
# Function to transcribe Tamil audio using Groq's Whisper
|
25 |
-
def transcribe(
|
26 |
-
with open(
|
27 |
transcription = client.audio.transcriptions.create(
|
28 |
-
file=(
|
29 |
model="whisper-large-v3",
|
30 |
language="ta", # Tamil
|
31 |
response_format="verbose_json"
|
@@ -38,7 +36,7 @@ def translate_text(tamil_text):
|
|
38 |
model="gemma-7b-it",
|
39 |
messages=[{"role": "user", "content": f"Translate this Tamil text to English: {tamil_text}"}]
|
40 |
)
|
41 |
-
return response.choices[0].
|
42 |
|
43 |
# Function to generate text using Groq's DeepSeek R1
|
44 |
def generate_text(prompt):
|
@@ -46,7 +44,7 @@ def generate_text(prompt):
|
|
46 |
model="deepseek-coder-r1-7b",
|
47 |
messages=[{"role": "user", "content": f"Write a short story about: {prompt}"}]
|
48 |
)
|
49 |
-
return response.choices[0].
|
50 |
|
51 |
# Function to generate an image
|
52 |
def generate_image(prompt):
|
@@ -56,29 +54,41 @@ def generate_image(prompt):
|
|
56 |
# Streamlit UI
|
57 |
st.title("Tamil Speech to Image & Story Generator")
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import streamlit as st
|
4 |
from groq import Groq
|
5 |
from diffusers import AutoPipelineForText2Image
|
6 |
+
import tempfile
|
7 |
+
import soundfile as sf
|
8 |
|
9 |
# Load API keys
|
10 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
|
|
13 |
# Initialize Groq client with API key
|
14 |
client = Groq(api_key=GROQ_API_KEY)
|
15 |
|
|
|
|
|
|
|
|
|
16 |
# Load lightweight Hugging Face image generation model
|
17 |
image_gen = AutoPipelineForText2Image.from_pretrained(
|
18 |
"stabilityai/sdxl-turbo", use_auth_token=HF_API_KEY
|
19 |
)
|
20 |
+
image_gen.to("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
|
22 |
# Function to transcribe Tamil audio using Groq's Whisper
|
23 |
+
def transcribe(audio_path):
|
24 |
+
with open(audio_path, "rb") as file:
|
25 |
transcription = client.audio.transcriptions.create(
|
26 |
+
file=(audio_path, file.read()),
|
27 |
model="whisper-large-v3",
|
28 |
language="ta", # Tamil
|
29 |
response_format="verbose_json"
|
|
|
36 |
model="gemma-7b-it",
|
37 |
messages=[{"role": "user", "content": f"Translate this Tamil text to English: {tamil_text}"}]
|
38 |
)
|
39 |
+
return response.choices[0].delta.content
|
40 |
|
41 |
# Function to generate text using Groq's DeepSeek R1
|
42 |
def generate_text(prompt):
|
|
|
44 |
model="deepseek-coder-r1-7b",
|
45 |
messages=[{"role": "user", "content": f"Write a short story about: {prompt}"}]
|
46 |
)
|
47 |
+
return response.choices[0].delta.content
|
48 |
|
49 |
# Function to generate an image
|
50 |
def generate_image(prompt):
|
|
|
54 |
# Streamlit UI
|
55 |
st.title("Tamil Speech to Image & Story Generator")
|
56 |
|
57 |
+
# Audio input - Recording or Uploading
|
58 |
+
st.subheader("Upload or Record Audio")
|
59 |
+
recorded_audio = st.audio("", format='audio/wav', start_time=0)
|
60 |
+
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "m4a"])
|
61 |
+
|
62 |
+
audio_path = None
|
63 |
+
|
64 |
+
if uploaded_file is not None:
|
65 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
66 |
+
temp_audio.write(uploaded_file.read())
|
67 |
+
audio_path = temp_audio.name
|
68 |
+
elif recorded_audio:
|
69 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
70 |
+
audio_data, samplerate = sf.read(recorded_audio)
|
71 |
+
sf.write(temp_audio.name, audio_data, samplerate)
|
72 |
+
audio_path = temp_audio.name
|
73 |
+
|
74 |
+
if st.button("Generate") and audio_path:
|
75 |
+
with st.spinner("Transcribing Tamil speech..."):
|
76 |
+
tamil_text = transcribe(audio_path)
|
77 |
+
with st.spinner("Translating to English..."):
|
78 |
+
english_text = translate_text(tamil_text)
|
79 |
+
with st.spinner("Generating story..."):
|
80 |
+
story = generate_text(english_text)
|
81 |
+
with st.spinner("Generating image..."):
|
82 |
+
image = generate_image(english_text)
|
83 |
+
|
84 |
+
st.subheader("Tamil Transcription")
|
85 |
+
st.write(tamil_text)
|
86 |
+
|
87 |
+
st.subheader("English Translation")
|
88 |
+
st.write(english_text)
|
89 |
+
|
90 |
+
st.subheader("Generated Story")
|
91 |
+
st.write(story)
|
92 |
+
|
93 |
+
st.subheader("Generated Image")
|
94 |
+
st.image(image)
|