Update app.py
Browse files
app.py
CHANGED
@@ -1,94 +1,68 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
import torch
|
4 |
-
from transformers import pipeline
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
-
from
|
7 |
-
import
|
8 |
-
import os
|
9 |
|
10 |
-
st.set_page_config(page_title="Tamil
|
11 |
-
st.title("π€ Tamil Voice to Story & Image Generator")
|
12 |
|
13 |
-
# Load models
|
14 |
@st.cache_resource
|
15 |
def load_models():
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
# 3. Tiny Story Generator
|
24 |
-
story_gen = pipeline("text-generation", model="sshleifer/tiny-gpt2", device=0 if torch.cuda.is_available() else -1)
|
25 |
-
|
26 |
-
# 4. Image Generator
|
27 |
-
image_pipe = StableDiffusionPipeline.from_pretrained(
|
28 |
-
"CompVis/stable-diffusion-v1-4",
|
29 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
30 |
-
)
|
31 |
-
if torch.cuda.is_available():
|
32 |
-
image_pipe.to("cuda")
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
|
39 |
-
def translate_ta_to_en(text):
|
40 |
-
inputs = tokenizer_trans(text, return_tensors="pt", padding=True)
|
41 |
-
translated = model_trans.generate(**inputs, forced_bos_token_id=tokenizer_trans.lang_code_to_id["eng_Latn"])
|
42 |
-
return tokenizer_trans.batch_decode(translated, skip_special_tokens=True)[0]
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# Function: Generate image
|
50 |
-
def generate_image(prompt):
|
51 |
-
image = image_pipe(prompt).images[0]
|
52 |
-
return image
|
53 |
-
|
54 |
-
# Upload or Record
|
55 |
-
input_method = st.radio("Select Input Method", ["Upload Audio", "Record Live"])
|
56 |
-
|
57 |
-
if input_method == "Upload Audio":
|
58 |
-
audio_file = st.file_uploader("Upload Tamil Audio", type=["wav", "mp3", "m4a"])
|
59 |
else:
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmpfile:
|
64 |
-
tmpfile.write(audio_bytes.read())
|
65 |
-
audio_file = tmpfile.name
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
with st.spinner("π Transcribing Tamil audio..."):
|
70 |
-
result = whisper_pipe(audio_file)
|
71 |
-
tamil_text = result['text']
|
72 |
|
73 |
-
|
74 |
-
|
|
|
75 |
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
78 |
|
79 |
-
st.
|
80 |
-
|
|
|
81 |
|
82 |
-
with st.spinner("
|
83 |
-
|
|
|
84 |
|
85 |
-
st.
|
86 |
-
|
|
|
87 |
|
88 |
-
with st.spinner("
|
89 |
-
image =
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
elif st.button("Generate from Audio") and not audio_file:
|
94 |
-
st.warning("Please upload or record an audio file.")
|
|
|
1 |
import streamlit as st
|
2 |
+
import tempfile
|
3 |
import torch
|
4 |
+
from transformers import pipeline
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
+
from pydub import AudioSegment
|
7 |
+
import base64
|
|
|
8 |
|
9 |
+
st.set_page_config(page_title="Tamil Audio to Story & Image", layout="centered")
|
|
|
10 |
|
11 |
+
# Load lightweight models
|
12 |
@st.cache_resource
|
13 |
def load_models():
|
14 |
+
whisper = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
15 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ta-en")
|
16 |
+
text_gen = pipeline("text-generation", model="sshleifer/tiny-gpt2")
|
17 |
+
image_gen = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
18 |
+
image_gen.to("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
return whisper, translator, text_gen, image_gen
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
whisper, translator, text_gen, image_gen = load_models()
|
22 |
|
23 |
+
st.title("ποΈ Tamil Audio to Story & Image")
|
24 |
+
st.write("Upload or record Tamil audio to generate English story and image.")
|
25 |
|
26 |
+
input_mode = st.radio("Choose Input Mode", ["Upload Audio", "Record Live Audio"])
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
audio_bytes = None
|
29 |
+
if input_mode == "Upload Audio":
|
30 |
+
uploaded_file = st.file_uploader("Upload Tamil Audio (.wav, .mp3)", type=["wav", "mp3"], key="upload")
|
31 |
+
if uploaded_file:
|
32 |
+
audio_bytes = uploaded_file.read()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
else:
|
34 |
+
audio_recorder = st.audio_recorder("Record your audio", format="audio/wav", key="recorder")
|
35 |
+
if audio_recorder:
|
36 |
+
audio_bytes = audio_recorder
|
|
|
|
|
|
|
37 |
|
38 |
+
if audio_bytes:
|
39 |
+
st.audio(audio_bytes, format="audio/wav")
|
|
|
|
|
|
|
40 |
|
41 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
|
42 |
+
tmp.write(audio_bytes)
|
43 |
+
tmp_path = tmp.name
|
44 |
|
45 |
+
# Convert mp3 to wav if needed
|
46 |
+
if tmp_path.endswith(".mp3"):
|
47 |
+
sound = AudioSegment.from_mp3(tmp_path)
|
48 |
+
tmp_path = tmp_path.replace(".mp3", ".wav")
|
49 |
+
sound.export(tmp_path, format="wav")
|
50 |
|
51 |
+
with st.spinner("Transcribing..."):
|
52 |
+
transcription = whisper(tmp_path)["text"]
|
53 |
+
st.text_area("Transcribed Tamil Text", transcription)
|
54 |
|
55 |
+
with st.spinner("Translating..."):
|
56 |
+
translation = translator(transcription)[0]['translation_text']
|
57 |
+
st.text_area("Translated English Text", translation)
|
58 |
|
59 |
+
with st.spinner("Generating Story..."):
|
60 |
+
story = text_gen(translation, max_length=100)[0]['generated_text']
|
61 |
+
st.text_area("Generated Story", story)
|
62 |
|
63 |
+
with st.spinner("Generating Image..."):
|
64 |
+
image = image_gen(prompt=translation).images[0]
|
65 |
+
st.image(image, caption="Generated Image")
|
66 |
|
67 |
+
else:
|
68 |
+
st.warning("Please upload or record an audio to proceed.")
|
|
|
|