import os import torch import streamlit as st from groq import Groq from diffusers import AutoPipelineForText2Image # Load API keys GROQ_API_KEY = os.getenv("GROQ_API_KEY") HF_API_KEY = os.getenv("HF_API_KEY") # Initialize Groq client with API key client = Groq(api_key=GROQ_API_KEY) # Select device (GPU if available, else CPU) device = "cuda" if torch.cuda.is_available() else "cpu" st.write(f"Using device: {device}") # Display device info # Load lightweight Hugging Face image generation model image_gen = AutoPipelineForText2Image.from_pretrained( "stabilityai/sdxl-turbo", use_auth_token=HF_API_KEY ) image_gen.to(device) # Function to transcribe Tamil audio using Groq's Whisper def transcribe(audio_file): with open(audio_file, "rb") as file: transcription = client.audio.transcriptions.create( file=(audio_file, file.read()), model="whisper-large-v3", language="ta", # Tamil response_format="verbose_json" ) return transcription["text"] # Function to translate Tamil to English using Groq's Gemma def translate_text(tamil_text): response = client.chat.completions.create( model="gemma-7b-it", messages=[{"role": "user", "content": f"Translate this Tamil text to English: {tamil_text}"}] ) return response.choices[0].message.content # Function to generate text using Groq's DeepSeek R1 def generate_text(prompt): response = client.chat.completions.create( model="deepseek-coder-r1-7b", messages=[{"role": "user", "content": f"Write a short story about: {prompt}"}] ) return response.choices[0].message.content # Function to generate an image def generate_image(prompt): img = image_gen(prompt=prompt).images[0] return img # Streamlit UI st.title("Tamil Speech to Image & Story Generator") # File uploader for audio uploaded_audio = st.file_uploader("Upload your Tamil speech", type=["wav", "mp3", "m4a"]) if uploaded_audio is not None: st.audio(uploaded_audio, format="audio/wav") if st.button("Generate"): with st.spinner("Transcribing..."): tamil_text = transcribe(uploaded_audio) st.success("Transcription complete!") st.text_area("Tamil Text Output", tamil_text) with st.spinner("Translating to English..."): english_text = translate_text(tamil_text) st.success("Translation complete!") st.text_area("Translated English Text", english_text) with st.spinner("Generating story..."): story = generate_text(english_text) st.success("Story generation complete!") st.text_area("Generated Story", story) with st.spinner("Generating image..."): image = generate_image(english_text) st.success("Image generation complete!") st.image(image, caption="Generated Image")