import os import streamlit as st import torch import tempfile from groq import Groq from diffusers import AutoPipelineForText2Image from io import BytesIO # Load API keys GROQ_API_KEY = os.getenv("GROQ_API_KEY") HF_API_KEY = os.getenv("HF_API_KEY") # Initialize Groq client client = Groq(api_key=GROQ_API_KEY) # Load image generation model device = "cuda" if torch.cuda.is_available() else "cpu" image_gen = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", use_auth_token=HF_API_KEY).to(device) # Function to transcribe Tamil audio using Groq's Whisper def transcribe(audio_bytes): if not audio_bytes: return "No audio provided." # Save the audio file temporarily with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio: temp_audio.write(audio_bytes) temp_audio_path = temp_audio.name # Call Whisper API with open(temp_audio_path, "rb") as file: transcription = client.audio.transcriptions.create( file=file, model="whisper-large-v3", language="ta", response_format="verbose_json" ) # Cleanup temp file os.remove(temp_audio_path) return transcription["text"] # Function to translate Tamil to English using Groq's Gemma def translate_text(tamil_text): response = client.chat.completions.create( model="gemma-7b-it", messages=[{"role": "user", "content": f"Translate this Tamil text to English: {tamil_text}"}] ) return response.choices[0].message.content # Function to generate text using Groq's DeepSeek R1 def generate_text(prompt): response = client.chat.completions.create( model="deepseek-coder-r1-7b", messages=[{"role": "user", "content": f"Write a short story about: {prompt}"}] ) return response.choices[0].message.content # Function to generate an image def generate_image(prompt): img = image_gen(prompt=prompt).images[0] return img # Streamlit UI st.title("🎤 Tamil Speech to Image & Story Generator") # Upload audio file audio_file = st.file_uploader("Upload a Tamil audio file", type=["wav", "mp3"]) if st.button("Generate"): if audio_file is not None: # Read audio bytes audio_bytes = audio_file.read() # Process Steps tamil_text = transcribe(audio_bytes) english_text = translate_text(tamil_text) story = generate_text(english_text) image = generate_image(english_text) # Display Outputs st.subheader("📝 Transcribed Tamil Text") st.write(tamil_text) st.subheader("🔠 Translated English Text") st.write(english_text) st.subheader("📖 Generated Story") st.write(story) st.subheader("🖼️ Generated Image") st.image(image, caption="Generated Image from Story") else: st.warning("⚠️ Please upload an audio file before generating.")