File size: 20,865 Bytes
a0b0bb4
 
 
 
dae5165
a0b0bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4553389
a0b0bb4
4553389
 
a0b0bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ba60a0
a0b0bb4
8ba60a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0b0bb4
 
 
 
 
 
6070819
a0b0bb4
 
 
 
d49ed3f
02da43b
0c0293e
d49ed3f
92a809d
d49ed3f
a0b0bb4
 
 
 
738a07f
4fe2177
 
 
 
 
 
ad377af
a0b0bb4
 
4fe2177
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
import tiktoken
import torch
import time
import math
import re
from torch.utils.data import Dataset, DataLoader

import gradio as gr
import torch.nn as nn

class GPTModel(nn.Module):

    def __init__(self, cfg):
        super().__init__()
        self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
        self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
        self.drop_emb = nn.Dropout(cfg["drop_rate"])

        self.trf_blocks = nn.Sequential(
            *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]
        )

        self.final_norm = LayerNorm(cfg["emb_dim"])
        self.out_head = nn.Linear(
            cfg["emb_dim"], cfg["vocab_size"], bias=False
        )
    
    def forward(self, in_idx):
        batch_size, seq_len = in_idx.shape
        tok_embeds = self.tok_emb(in_idx)
        pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
        x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size]
        x = self.drop_emb(x)
        x = self.trf_blocks(x)
        x = self.final_norm(x)
        logits = self.out_head(x)
        return logits

class TransformerBlock(nn.Module):

    def __init__(self, cfg):
        super().__init__()
        self.att = MultiHeadAttention(
            d_in=cfg["emb_dim"],
            d_out=cfg["emb_dim"],
            context_length=cfg["context_length"],
            num_heads=cfg["n_heads"],
            dropout=cfg["drop_rate"],
            qkv_bias=cfg["qkv_bias"]
        )
        self.ff = FeedForward(cfg)
        self.norm1 = LayerNorm(cfg["emb_dim"])
        self.norm2 = LayerNorm(cfg["emb_dim"])
        self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
    
    def forward(self, x):
        # Shortcut connection for attnetion block
        shortcut = x
        x = self.norm1(x)
        x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
        x = self.drop_shortcut(x)
        x = x + shortcut # Add the original input back

        # Shortcut connection for feed forward block
        shortcut = x
        x = self.norm2(x)
        x = self.ff(x)
        x = self.drop_shortcut(x)
        x = x + shortcut # Add the original input back

        return x

class TransformerBlock(nn.Module):

    def __init__(self, cfg):
        super().__init__()
        self.att = MultiHeadAttention(
            d_in=cfg["emb_dim"],
            d_out=cfg["emb_dim"],
            context_length=cfg["context_length"],
            num_heads=cfg["n_heads"],
            dropout=cfg["drop_rate"],
            qkv_bias=cfg["qkv_bias"]
        )
        self.ff = FeedForward(cfg)
        self.norm1 = LayerNorm(cfg["emb_dim"])
        self.norm2 = LayerNorm(cfg["emb_dim"])
        self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
    
    def forward(self, x):
        # Shortcut connection for attnetion block
        shortcut = x
        x = self.norm1(x)
        x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
        x = self.drop_shortcut(x)
        x = x + shortcut # Add the original input back

        # Shortcut connection for feed forward block
        shortcut = x
        x = self.norm2(x)
        x = self.ff(x)
        x = self.drop_shortcut(x)
        x = x + shortcut # Add the original input back

        return x

class MultiHeadAttention(nn.Module):

    def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
        super().__init__()
        assert (d_out % num_heads == 0), \
            "d_out must be divisible by num_heads"
        
        self.d_out = d_out
        self.num_heads = num_heads
        self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim

        self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
        self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
        self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
        self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
        self.dropout = nn.Dropout(dropout)
        self.register_buffer(
            "mask",
            torch.triu(torch.ones(context_length, context_length),
                       diagonal=1)
        )
    
    def forward(self, x):
        b, num_tokens, d_in = x.shape

        keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
        queries = self.W_query(x)
        values = self.W_value(x)
        
        # implicitly split the matrix by adding a `num_heads` dimension
        # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
        keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
        values = values.view(b, num_tokens, self.num_heads, self.head_dim)
        queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)

        # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
        keys = keys.transpose(1, 2)
        queries = queries.transpose(1, 2)
        values = values.transpose(1, 2)

        # Compute scaled dot-product attention (aka self-attention) with a causal mask
        attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head

        # Original mask truncated to the number of tokens and converted to boolean
        mask_bool = self.mask.bool()[:num_tokens, :num_tokens]

        # Use the mask to fill attention scores
        attn_scores.masked_fill_(mask_bool, -torch.inf)

        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
        attn_weights = self.dropout(attn_weights)

        # Shape: (b, num_tokens, num_heads, head_dim)
        context_vec = (attn_weights @ values).transpose(1, 2)

        # Combine heads, where self.d_out = self.num_heads * self.head_dim
        context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
        context_vec = self.out_proj(context_vec) # optional projection

        return context_vec
    
class FeedForward(nn.Module):

    def __init__(self, cfg):
        super().__init__()
        self.layers = nn.Sequential(
            nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
            GELU(),
            nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"])
        )
    
    def forward(self, x):
        return self.layers(x)

class GELU(nn.Module):

    def __init__(self):
        super().__init__()
    
    def forward(self, x):
        return 0.5 * x * (1 + torch.tanh(
            torch.sqrt(torch.tensor(2.0 / torch.pi)) *
            (x + 0.044715 * torch.pow(x, 3))
        ))

class LayerNorm(nn.Module):

    def __init__(self, emb_dim):
        super().__init__()
        self.eps = 1e-5
        self.scale = nn.Parameter(torch.ones(emb_dim))
        self.shift = nn.Parameter(torch.zeros(emb_dim))
    
    def forward(self, x):
        mean = x.mean(dim=-1, keepdim=True)
        var = x.var(dim=-1, keepdim=True, unbiased=False)
        norm_x = (x - mean) / torch.sqrt(var + self.eps)
        return self.scale * norm_x + self.shift




GPT_CONFIG_124M = {
    "vocab_size": 50257,   # Vocabulary size
    "context_length": 256, # Shortended context length (orig: 1024)
    "emb_dim": 768,        # Embedding dimension
    "n_heads": 12,         # Number of attention heads
    "n_layers": 12,        # Number of layers
    "drop_rate": 0.1,      # Dropout rate
    "qkv_bias": False      # Query-key-value bias
}

model = GPTModel(GPT_CONFIG_124M)

def generate(model, idx, max_new_tokens, context_size, tokenizer, text_to_token_ids, temperature=0.0, top_k=None, eos_id=None):

    # For-loop is the same as before: Get logits, and only focus on last time step
    for _ in range(max_new_tokens):
        idx_cond = idx[:, -context_size:]
        with torch.no_grad():
            logits = model(idx_cond)
        logits = logits[:, -1, :]

        # New: Filter logits with top_k sampling
        if top_k is not None:
            # Keep only top_k values
            top_logits, _ = torch.topk(logits, top_k)
            min_val = top_logits[:, -1]
            logits = torch.where(logits < min_val, torch.tensor(float("-inf")).to(logits.device), logits)
        
        # New: Apply temperature scaling
        if temperature > 0.0:
            logits = logits / temperature

            # Apply softmax to get probabilities
            probs = torch.softmax(logits, dim=-1) # (batch_size, context_len)

            # Sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1)
        
        # Otherwise, same as before: get the idx of the vocab entry with the highest logits value
        else:
            idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1)
        
        if idx_next == eos_id: # Stop generating early if end-of-sequence token is encountered and eos_id is specified
            break
        
        # if idx_next == text_to_token_ids(".", tokenizer):
        if idx_next == "tensor([[13]])":
            # idx_next = idx_next + text_to_token_ids("Meow.", tokenizer)
            print("\nperiod\n")
        
        # if idx_next == text_to_token_ids("?", tokenizer):
        if idx_next == "tensor([[30]])":
            # idx_next = idx_next + text_to_token_ids("Meow.", tokenizer)
            print("\nperiod\n")
        
        # if idx_next == text_to_token_ids("!", tokenizer):
        if idx_next == "tensor([[0]])":
            # idx_next = idx_next + text_to_token_ids("Meow.", tokenizer)
            print("\nperiod\n")
        
        # print(idx_next)
        # print("----")
        # print(idx_next + text_to_token_ids("Meow.", tokenizer))
        # test = idx_next + text_to_token_ids("Meow.", tokenizer)
        # print("------")
        # print(token_ids_to_text(idx_next, tokenizer))
        # Same as before: append sampled index to the running sequence
        idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1)
    # new_idx = re.sub(".", ". Meow.", idx)
    
    # return new_idx
    return idx

def text_to_token_ids(text, tokenizer):
    encoded = tokenizer.encode(text, allowed_special={'<|endoftext|>'})
    encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
    return encoded_tensor

def token_ids_to_text(token_ids, tokenizer):
    flat = token_ids.squeeze(0) # remove batch dimension
    return tokenizer.decode(flat.tolist())

def train_model(model, train_loader, val_loader, optimizer, device,
                n_epochs, eval_freq, eval_iter, start_context, tokenizer,
                warmup_steps, initial_lr=3e-05, min_lr=1e-6):
    
    train_losses, val_losses, track_tokens_seen, track_lrs = [], [], [], []
    tokens_seen, global_step = 0, -1

    # Retrieve the maximum learning rate from the optimizer
    peak_lr = optimizer.param_groups[0]["lr"]

    # Calculate the total number of iterations in the training process
    total_training_steps = len(train_loader) * n_epochs

    # Calculate the learning rate increment during the warmup phase
    lr_increment = (peak_lr - initial_lr) / warmup_steps

    for epoch in range(n_epochs):
        model.train()
        for input_batch, target_batch in train_loader:
            optimizer.zero_grad()
            global_step += 1

            # Adjust the learning rate based on the current phase (warmup or cosine annealing)
            if global_step < warmup_steps:
                # Linear warmup
                lr = initial_lr + global_step * lr_increment
            else:
                # Cosine annealing after warmup
                progress = ((global_step - warmup_steps) /
                            (total_training_steps - warmup_steps))
                lr = min_lr + (peak_lr - min_lr) * 0.5 * (1 + math.cos(math.pi * progress))
            
            # Apply the calculated learning rate to the optimizer
            for param_group in optimizer.param_groups:
                param_group["lr"] = lr
            track_lrs.append(lr) # Store the current learning rate

            # Calculate and backpropagate the loss
            loss = calc_loss_batch(input_batch, target_batch, model, device)
            loss.backward()

            # Apply gradient clipping after the warmup phase to avoid exploding gradients
            if global_step > warmup_steps:
                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
            
            optimizer.step()
            tokens_seen += input_batch.numel()

            # Periodically evaluate the model on the training and validation sets
            if global_step % eval_freq == 0:
                train_loss, val_loss = evaluate_model(
                    model, train_loader, val_loader,
                    device, eval_iter
                )
                train_losses.append(train_loss)
                val_losses.append(val_loss)
                track_tokens_seen.append(tokens_seen)
                # Print the current losses
                print(f"Ep {epoch+1} (Iter {global_step:06d}): "
                      f"Train loss {train_loss:.3f}, "
                      f"Val loss {val_loss:.3f}"
                )

        # Generate and print a sample from the model to monitor progress
        generate_and_print_sample(
            model, tokenizer, device, start_context
        )
    
    return train_losses, val_losses, track_tokens_seen, track_lrs

def create_dataloader_v1(txt, batch_size=4, max_length=256, stride=128, shuffle=True, drop_last=True, num_workers=0):
    tokenizer = tiktoken.get_encoding("gpt2") # A - Initalize the tokenizer
    dataset = GPTDatasetV1(txt, tokenizer, max_length, stride) # B - Create dataset
    dataloader = DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=shuffle,
        drop_last=drop_last, # C - drop_last=True drops the last batch if it is shorter than the specified batch_size to prevent loss spikes during training
        num_workers=0 # D - The number of CPU processes to use for preprocessing
    )

    return dataloader



class GPTDatasetV1(Dataset):
    def __init__(self, txt, tokenizer, max_length, stride):
        self.tokenizer = tokenizer
        self.input_ids = []
        self.target_ids = []

        token_ids = tokenizer.encode(txt) # A

        for i in range(0, len(token_ids) - max_length, stride): # B
            input_chunk = token_ids[i:i + max_length]
            target_chunk = token_ids[i + 1: i +max_length + 1]
            self.input_ids.append(torch.tensor(input_chunk))
            self.target_ids.append(torch.tensor(target_chunk))
    
    def __len__(self):
        return len(self.input_ids)
    
    def __getitem__(self, idx):
        return self.input_ids[idx], self.target_ids[idx]


def evaluate_model(model, train_loader, val_loader, device, eval_iter):
    model.eval()
    with torch.no_grad():
        train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
        val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
    model.train()
    return train_loss, val_loss

def generate_and_print_sample(model, tokenizer, device, start_context):
    model.eval()
    context_size = model.pos_emb.weight.shape[0]
    encoded = text_to_token_ids(start_context, tokenizer).to(device)
    with torch.no_grad():
        token_ids = generate_text_simple(
            model=model, idx=encoded,
            max_new_tokens=50, context_size=context_size
        )
    decoded_text = token_ids_to_text(token_ids, tokenizer)
    print(decoded_text.replace("\n", " ")) # Compact print format
    model.train()

def calc_loss_batch(input_batch, target_batch, model, device):
    input_batch, target_batch = input_batch.to(device), target_batch.to(device)
    logits = model(input_batch)
    loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten())
    return loss

def calc_loss_loader(data_loader, model, device, num_batches=None):
    total_loss = 0.
    if len(data_loader) == 0:
        return float("nan")
    elif num_batches is None:
        num_batches = len(data_loader)
    else:
        # Reduce the number of batches to match the total number of batches in the data loader
        # if num_batches exceeds the number of batches in the data loader
        num_batches = min(num_batches, len(data_loader))
    for i, (input_batch, target_batch) in enumerate(data_loader):
        if i < num_batches:
            loss = calc_loss_batch(input_batch, target_batch, model, device)
            total_loss += loss.item()
        else:
            break
    return total_loss / num_batches

def generate_text_simple(model, idx, max_new_tokens, context_size):
    # idx is (batch, n_tokens) array of indices in the current context
    for _ in range(max_new_tokens):

        # Crop current context if it exceeds the supported context size
        idx_cond = idx[:, -context_size:]

        # get the predictions
        with torch.no_grad():
            logits = model(idx_cond)
        
        # Focus only on the last time step
        # (batch, n_tokens, vocab_size) becomes (batch, vocab_size)
        logits = logits[:, -1, :]

        # apply softmax to get the probabilities
        probas = torch.softmax(logits, dim=-1) # (batch, vocab_size)

        # Get the idx of the vocab entry with the highest probability value
        idx_next = torch.argmax(probas, dim=-1, keepdim=True) # (batch, 1)

        # if idx_next == text_to_token_ids(".", tokenizer):
        #     idx_next = idx_next + text_to_token_ids("Meow.", tokenizer)
        
        # if idx_next == text_to_token_ids("?", tokenizer):
        #     idx_next = idx_next + text_to_token_ids("Meow.", tokenizer)
        
        # if idx_next == text_to_token_ids("!", tokenizer):
        #     idx_next = idx_next + text_to_token_ids("Meow.", tokenizer)

        # Append sampled index to the running sequence
        idx = torch.cat((idx, idx_next), dim=1) # (batch , n_tokens+1)

    return idx

def main(input_text, max_new_tokens):

    tokenizer = tiktoken.get_encoding("gpt2")

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if torch.cuda.is_available():
        device = torch.device("cuda")
    elif torch.backends.mps.is_available():
        device = torch.device("mps")
    else:
        device = torch.device("cpu")

    checkpoint = torch.load("model_and_optimizer.pth", weights_only=True)

    model = GPTModel(GPT_CONFIG_124M)
    model.load_state_dict(checkpoint["model_state_dict"])

    optimizer = torch.optim.AdamW(model.parameters(), lr=0.0005, weight_decay=0.1)
    optimizer.load_state_dict(checkpoint["optimizer_state_dict"])

    # weights = torch.load("model_and_optimizer.pth", map_location=torch.device(device))
    # weights = torch.load("model_and_optimizer.pth", weights_only=False)

    # model = GPTModel({
    # "vocab_size": 50257,   # Vocabulary size
    # "context_length": 512, # Shortened context length (orig: 1024)
    # "emb_dim": 768,        # Embedding dimension
    # "n_heads": 12,         # Number of attention heads
    # "n_layers": 12,        # Number of layers
    # "drop_rate": 0.3,      # Dropout rate
    # "qkv_bias": False      # Query-key-value bias
    # }).to(device)
    # model.load_state_dict(weights['model_state_dict'])
    model.eval()

    context_size = model.pos_emb.weight.shape[0]
    encoded = torch.tensor(tokenizer.encode(input_text.strip())).unsqueeze(0).to(device)

    with torch.no_grad():
        token_ids = generate(
            model=model, idx=encoded,
            max_new_tokens=max_new_tokens, context_size=context_size,
            top_k=25, temperature=1.4, text_to_token_ids=text_to_token_ids, tokenizer=tokenizer
        )
        thingy = tokenizer.decode(token_ids.squeeze(0).tolist())
        new_thingy = re.sub("\.", ". Meow.", thingy)
        # return tokenizer.decode(token_ids.squeeze(0).tolist())
        # return tokenizer.decode(new_thing.squeeze(0).tolist())
        print(thingy)
        return new_thingy

# if __name__ == "__main__":
#     gr.Interface(fn=main, inputs=[gr.Textbox(label='Starting context'), gr.Number(label="Maximum output tokens")], outputs=[gr.Textbox(label="Response:")], title="CatGPT", article="Meow").launch()

# thing_old = gr.Interface(fn=main, theme=gr.themes.Soft(primary_hue="pink", secondary_hue="stone"), inputs=[gr.Textbox(label='Starting context'), gr.Number(label="Maximum output tokens")], outputs=[gr.Textbox(label="Response:")], title="CatGPT", article="Meow")
thing = gr.Interface(fn=main, 
                     theme='ParityError/Anime', 
                     inputs=[gr.Textbox(label='Starting context'), 
                     gr.Number(label="Maximum output tokens")], 
                     outputs=[gr.Textbox(label="Response:")], 
                     title="CatGPT", 
                     article="Meow")

if __name__ == "__main__":
    thing.launch()