import tiktoken import torch import time import math import re from torch.utils.data import Dataset, DataLoader import gradio as gr import torch.nn as nn class GPTModel(nn.Module): def __init__(self, cfg): super().__init__() self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) self.drop_emb = nn.Dropout(cfg["drop_rate"]) self.trf_blocks = nn.Sequential( *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])] ) self.final_norm = LayerNorm(cfg["emb_dim"]) self.out_head = nn.Linear( cfg["emb_dim"], cfg["vocab_size"], bias=False ) def forward(self, in_idx): batch_size, seq_len = in_idx.shape tok_embeds = self.tok_emb(in_idx) pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size] x = self.drop_emb(x) x = self.trf_blocks(x) x = self.final_norm(x) logits = self.out_head(x) return logits class TransformerBlock(nn.Module): def __init__(self, cfg): super().__init__() self.att = MultiHeadAttention( d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], context_length=cfg["context_length"], num_heads=cfg["n_heads"], dropout=cfg["drop_rate"], qkv_bias=cfg["qkv_bias"] ) self.ff = FeedForward(cfg) self.norm1 = LayerNorm(cfg["emb_dim"]) self.norm2 = LayerNorm(cfg["emb_dim"]) self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) def forward(self, x): # Shortcut connection for attnetion block shortcut = x x = self.norm1(x) x = self.att(x) # Shape [batch_size, num_tokens, emb_size] x = self.drop_shortcut(x) x = x + shortcut # Add the original input back # Shortcut connection for feed forward block shortcut = x x = self.norm2(x) x = self.ff(x) x = self.drop_shortcut(x) x = x + shortcut # Add the original input back return x class TransformerBlock(nn.Module): def __init__(self, cfg): super().__init__() self.att = MultiHeadAttention( d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], context_length=cfg["context_length"], num_heads=cfg["n_heads"], dropout=cfg["drop_rate"], qkv_bias=cfg["qkv_bias"] ) self.ff = FeedForward(cfg) self.norm1 = LayerNorm(cfg["emb_dim"]) self.norm2 = LayerNorm(cfg["emb_dim"]) self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) def forward(self, x): # Shortcut connection for attnetion block shortcut = x x = self.norm1(x) x = self.att(x) # Shape [batch_size, num_tokens, emb_size] x = self.drop_shortcut(x) x = x + shortcut # Add the original input back # Shortcut connection for feed forward block shortcut = x x = self.norm2(x) x = self.ff(x) x = self.drop_shortcut(x) x = x + shortcut # Add the original input back return x class MultiHeadAttention(nn.Module): def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): super().__init__() assert (d_out % num_heads == 0), \ "d_out must be divisible by num_heads" self.d_out = d_out self.num_heads = num_heads self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs self.dropout = nn.Dropout(dropout) self.register_buffer( "mask", torch.triu(torch.ones(context_length, context_length), diagonal=1) ) def forward(self, x): b, num_tokens, d_in = x.shape keys = self.W_key(x) # Shape: (b, num_tokens, d_out) queries = self.W_query(x) values = self.W_value(x) # implicitly split the matrix by adding a `num_heads` dimension # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) values = values.view(b, num_tokens, self.num_heads, self.head_dim) queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) keys = keys.transpose(1, 2) queries = queries.transpose(1, 2) values = values.transpose(1, 2) # Compute scaled dot-product attention (aka self-attention) with a causal mask attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head # Original mask truncated to the number of tokens and converted to boolean mask_bool = self.mask.bool()[:num_tokens, :num_tokens] # Use the mask to fill attention scores attn_scores.masked_fill_(mask_bool, -torch.inf) attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) attn_weights = self.dropout(attn_weights) # Shape: (b, num_tokens, num_heads, head_dim) context_vec = (attn_weights @ values).transpose(1, 2) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out) context_vec = self.out_proj(context_vec) # optional projection return context_vec class FeedForward(nn.Module): def __init__(self, cfg): super().__init__() self.layers = nn.Sequential( nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), GELU(), nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]) ) def forward(self, x): return self.layers(x) class GELU(nn.Module): def __init__(self): super().__init__() def forward(self, x): return 0.5 * x * (1 + torch.tanh( torch.sqrt(torch.tensor(2.0 / torch.pi)) * (x + 0.044715 * torch.pow(x, 3)) )) class LayerNorm(nn.Module): def __init__(self, emb_dim): super().__init__() self.eps = 1e-5 self.scale = nn.Parameter(torch.ones(emb_dim)) self.shift = nn.Parameter(torch.zeros(emb_dim)) def forward(self, x): mean = x.mean(dim=-1, keepdim=True) var = x.var(dim=-1, keepdim=True, unbiased=False) norm_x = (x - mean) / torch.sqrt(var + self.eps) return self.scale * norm_x + self.shift GPT_CONFIG_124M = { "vocab_size": 50257, # Vocabulary size "context_length": 256, # Shortended context length (orig: 1024) "emb_dim": 768, # Embedding dimension "n_heads": 12, # Number of attention heads "n_layers": 12, # Number of layers "drop_rate": 0.1, # Dropout rate "qkv_bias": False # Query-key-value bias } model = GPTModel(GPT_CONFIG_124M) def generate(model, idx, max_new_tokens, context_size, tokenizer, text_to_token_ids, temperature=0.0, top_k=None, eos_id=None): # For-loop is the same as before: Get logits, and only focus on last time step for _ in range(max_new_tokens): idx_cond = idx[:, -context_size:] with torch.no_grad(): logits = model(idx_cond) logits = logits[:, -1, :] # New: Filter logits with top_k sampling if top_k is not None: # Keep only top_k values top_logits, _ = torch.topk(logits, top_k) min_val = top_logits[:, -1] logits = torch.where(logits < min_val, torch.tensor(float("-inf")).to(logits.device), logits) # New: Apply temperature scaling if temperature > 0.0: logits = logits / temperature # Apply softmax to get probabilities probs = torch.softmax(logits, dim=-1) # (batch_size, context_len) # Sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1) # Otherwise, same as before: get the idx of the vocab entry with the highest logits value else: idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1) if idx_next == eos_id: # Stop generating early if end-of-sequence token is encountered and eos_id is specified break # if idx_next == text_to_token_ids(".", tokenizer): if idx_next == "tensor([[13]])": # idx_next = idx_next + text_to_token_ids("Meow.", tokenizer) print("\nperiod\n") # if idx_next == text_to_token_ids("?", tokenizer): if idx_next == "tensor([[30]])": # idx_next = idx_next + text_to_token_ids("Meow.", tokenizer) print("\nperiod\n") # if idx_next == text_to_token_ids("!", tokenizer): if idx_next == "tensor([[0]])": # idx_next = idx_next + text_to_token_ids("Meow.", tokenizer) print("\nperiod\n") # print(idx_next) # print("----") # print(idx_next + text_to_token_ids("Meow.", tokenizer)) # test = idx_next + text_to_token_ids("Meow.", tokenizer) # print("------") # print(token_ids_to_text(idx_next, tokenizer)) # Same as before: append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1) # new_idx = re.sub(".", ". Meow.", idx) # return new_idx return idx def text_to_token_ids(text, tokenizer): encoded = tokenizer.encode(text, allowed_special={'<|endoftext|>'}) encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension return encoded_tensor def token_ids_to_text(token_ids, tokenizer): flat = token_ids.squeeze(0) # remove batch dimension return tokenizer.decode(flat.tolist()) def train_model(model, train_loader, val_loader, optimizer, device, n_epochs, eval_freq, eval_iter, start_context, tokenizer, warmup_steps, initial_lr=3e-05, min_lr=1e-6): train_losses, val_losses, track_tokens_seen, track_lrs = [], [], [], [] tokens_seen, global_step = 0, -1 # Retrieve the maximum learning rate from the optimizer peak_lr = optimizer.param_groups[0]["lr"] # Calculate the total number of iterations in the training process total_training_steps = len(train_loader) * n_epochs # Calculate the learning rate increment during the warmup phase lr_increment = (peak_lr - initial_lr) / warmup_steps for epoch in range(n_epochs): model.train() for input_batch, target_batch in train_loader: optimizer.zero_grad() global_step += 1 # Adjust the learning rate based on the current phase (warmup or cosine annealing) if global_step < warmup_steps: # Linear warmup lr = initial_lr + global_step * lr_increment else: # Cosine annealing after warmup progress = ((global_step - warmup_steps) / (total_training_steps - warmup_steps)) lr = min_lr + (peak_lr - min_lr) * 0.5 * (1 + math.cos(math.pi * progress)) # Apply the calculated learning rate to the optimizer for param_group in optimizer.param_groups: param_group["lr"] = lr track_lrs.append(lr) # Store the current learning rate # Calculate and backpropagate the loss loss = calc_loss_batch(input_batch, target_batch, model, device) loss.backward() # Apply gradient clipping after the warmup phase to avoid exploding gradients if global_step > warmup_steps: torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() tokens_seen += input_batch.numel() # Periodically evaluate the model on the training and validation sets if global_step % eval_freq == 0: train_loss, val_loss = evaluate_model( model, train_loader, val_loader, device, eval_iter ) train_losses.append(train_loss) val_losses.append(val_loss) track_tokens_seen.append(tokens_seen) # Print the current losses print(f"Ep {epoch+1} (Iter {global_step:06d}): " f"Train loss {train_loss:.3f}, " f"Val loss {val_loss:.3f}" ) # Generate and print a sample from the model to monitor progress generate_and_print_sample( model, tokenizer, device, start_context ) return train_losses, val_losses, track_tokens_seen, track_lrs def create_dataloader_v1(txt, batch_size=4, max_length=256, stride=128, shuffle=True, drop_last=True, num_workers=0): tokenizer = tiktoken.get_encoding("gpt2") # A - Initalize the tokenizer dataset = GPTDatasetV1(txt, tokenizer, max_length, stride) # B - Create dataset dataloader = DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, # C - drop_last=True drops the last batch if it is shorter than the specified batch_size to prevent loss spikes during training num_workers=0 # D - The number of CPU processes to use for preprocessing ) return dataloader class GPTDatasetV1(Dataset): def __init__(self, txt, tokenizer, max_length, stride): self.tokenizer = tokenizer self.input_ids = [] self.target_ids = [] token_ids = tokenizer.encode(txt) # A for i in range(0, len(token_ids) - max_length, stride): # B input_chunk = token_ids[i:i + max_length] target_chunk = token_ids[i + 1: i +max_length + 1] self.input_ids.append(torch.tensor(input_chunk)) self.target_ids.append(torch.tensor(target_chunk)) def __len__(self): return len(self.input_ids) def __getitem__(self, idx): return self.input_ids[idx], self.target_ids[idx] def evaluate_model(model, train_loader, val_loader, device, eval_iter): model.eval() with torch.no_grad(): train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter) val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter) model.train() return train_loss, val_loss def generate_and_print_sample(model, tokenizer, device, start_context): model.eval() context_size = model.pos_emb.weight.shape[0] encoded = text_to_token_ids(start_context, tokenizer).to(device) with torch.no_grad(): token_ids = generate_text_simple( model=model, idx=encoded, max_new_tokens=50, context_size=context_size ) decoded_text = token_ids_to_text(token_ids, tokenizer) print(decoded_text.replace("\n", " ")) # Compact print format model.train() def calc_loss_batch(input_batch, target_batch, model, device): input_batch, target_batch = input_batch.to(device), target_batch.to(device) logits = model(input_batch) loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten()) return loss def calc_loss_loader(data_loader, model, device, num_batches=None): total_loss = 0. if len(data_loader) == 0: return float("nan") elif num_batches is None: num_batches = len(data_loader) else: # Reduce the number of batches to match the total number of batches in the data loader # if num_batches exceeds the number of batches in the data loader num_batches = min(num_batches, len(data_loader)) for i, (input_batch, target_batch) in enumerate(data_loader): if i < num_batches: loss = calc_loss_batch(input_batch, target_batch, model, device) total_loss += loss.item() else: break return total_loss / num_batches def generate_text_simple(model, idx, max_new_tokens, context_size): # idx is (batch, n_tokens) array of indices in the current context for _ in range(max_new_tokens): # Crop current context if it exceeds the supported context size idx_cond = idx[:, -context_size:] # get the predictions with torch.no_grad(): logits = model(idx_cond) # Focus only on the last time step # (batch, n_tokens, vocab_size) becomes (batch, vocab_size) logits = logits[:, -1, :] # apply softmax to get the probabilities probas = torch.softmax(logits, dim=-1) # (batch, vocab_size) # Get the idx of the vocab entry with the highest probability value idx_next = torch.argmax(probas, dim=-1, keepdim=True) # (batch, 1) # if idx_next == text_to_token_ids(".", tokenizer): # idx_next = idx_next + text_to_token_ids("Meow.", tokenizer) # if idx_next == text_to_token_ids("?", tokenizer): # idx_next = idx_next + text_to_token_ids("Meow.", tokenizer) # if idx_next == text_to_token_ids("!", tokenizer): # idx_next = idx_next + text_to_token_ids("Meow.", tokenizer) # Append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (batch , n_tokens+1) return idx def main(input_text, max_new_tokens): tokenizer = tiktoken.get_encoding("gpt2") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): device = torch.device("cuda") elif torch.backends.mps.is_available(): device = torch.device("mps") else: device = torch.device("cpu") checkpoint = torch.load("model_and_optimizer.pth", weights_only=True) model = GPTModel(GPT_CONFIG_124M) model.load_state_dict(checkpoint["model_state_dict"]) optimizer = torch.optim.AdamW(model.parameters(), lr=0.0005, weight_decay=0.1) optimizer.load_state_dict(checkpoint["optimizer_state_dict"]) # weights = torch.load("model_and_optimizer.pth", map_location=torch.device(device)) # weights = torch.load("model_and_optimizer.pth", weights_only=False) # model = GPTModel({ # "vocab_size": 50257, # Vocabulary size # "context_length": 512, # Shortened context length (orig: 1024) # "emb_dim": 768, # Embedding dimension # "n_heads": 12, # Number of attention heads # "n_layers": 12, # Number of layers # "drop_rate": 0.3, # Dropout rate # "qkv_bias": False # Query-key-value bias # }).to(device) # model.load_state_dict(weights['model_state_dict']) model.eval() context_size = model.pos_emb.weight.shape[0] encoded = torch.tensor(tokenizer.encode(input_text.strip())).unsqueeze(0).to(device) with torch.no_grad(): token_ids = generate( model=model, idx=encoded, max_new_tokens=max_new_tokens, context_size=context_size, top_k=25, temperature=1.4, text_to_token_ids=text_to_token_ids, tokenizer=tokenizer ) thingy = tokenizer.decode(token_ids.squeeze(0).tolist()) new_thingy = re.sub("\.", ". Meow.", thingy) # return tokenizer.decode(token_ids.squeeze(0).tolist()) # return tokenizer.decode(new_thing.squeeze(0).tolist()) print(thingy) return new_thingy # if __name__ == "__main__": # gr.Interface(fn=main, inputs=[gr.Textbox(label='Starting context'), gr.Number(label="Maximum output tokens")], outputs=[gr.Textbox(label="Response:")], title="CatGPT", article="Meow").launch() # thing_old = gr.Interface(fn=main, theme=gr.themes.Soft(primary_hue="pink", secondary_hue="stone"), inputs=[gr.Textbox(label='Starting context'), gr.Number(label="Maximum output tokens")], outputs=[gr.Textbox(label="Response:")], title="CatGPT", article="Meow") thing = gr.Interface(fn=main, theme='ParityError/Anime', inputs=[gr.Textbox(label='Starting context'), gr.Number(label="Maximum output tokens")], outputs=[gr.Textbox(label="Response:")], title="CatGPT", article="Meow") if __name__ == "__main__": thing.launch()