|
import streamlit as st |
|
import tempfile |
|
import os |
|
from pydub import AudioSegment |
|
from utils.noise_removal import remove_noise |
|
from utils.vad_segmentation import vad_segmentation |
|
from utils.speaker_diarization import diarize_speakers |
|
from utils.noise_classification import classify_noise |
|
|
|
st.set_page_config(page_title="Audio Analyzer", layout="wide") |
|
st.title("Audio Analysis Pipeline") |
|
|
|
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "m4a", "mp4a"]) |
|
|
|
def prepare_audio(uploaded_file): |
|
file_ext = uploaded_file.name.split('.')[-1].lower() |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as out_wav: |
|
if file_ext == "wav": |
|
out_wav.write(uploaded_file.read()) |
|
else: |
|
audio = AudioSegment.from_file(uploaded_file, format=file_ext) |
|
audio.export(out_wav.name, format="wav") |
|
return out_wav.name |
|
|
|
if uploaded_file: |
|
st.audio(uploaded_file, format="audio/wav") |
|
|
|
with st.spinner("🔄 Preparing audio..."): |
|
tmp_path = prepare_audio(uploaded_file) |
|
|
|
try: |
|
st.subheader("1️⃣ Noise Removal") |
|
denoised_path = tmp_path.replace(".wav", "_denoised.wav") |
|
with st.spinner("Removing noise..."): |
|
remove_noise(tmp_path, denoised_path) |
|
st.audio(denoised_path, format="audio/wav") |
|
except Exception as e: |
|
st.error(f" Noise removal failed: {e}") |
|
|
|
try: |
|
st.subheader("2️⃣ Speech Segmentation") |
|
with st.spinner("Running Voice Activity Detection..."): |
|
speech_annotation = vad_segmentation(denoised_path) |
|
segments = [(seg.start, seg.end) for seg in speech_annotation.itersegments()] |
|
st.write(f" Detected {len(segments)} speech segments.") |
|
for i, (start, end) in enumerate(segments[:5]): |
|
st.write(f"Segment {i+1}: {start:.2f}s to {end:.2f}s") |
|
except Exception as e: |
|
st.error(f" VAD failed: {e}") |
|
|
|
try: |
|
st.subheader("3️⃣ Speaker Diarization") |
|
with st.spinner("Diarizing speakers..."): |
|
diarization = diarize_speakers(denoised_path) |
|
st.text(" Speakers detected:") |
|
for turn, _, speaker in diarization.itertracks(yield_label=True): |
|
st.write(f"{turn.start:.2f}s - {turn.end:.2f}s: Speaker {speaker}") |
|
except Exception as e: |
|
st.error(f"Speaker diarization failed: {e}") |
|
|
|
try: |
|
st.subheader("4️⃣ Noise Classification") |
|
with st.spinner("Classifying background noise..."): |
|
noise_predictions = classify_noise(denoised_path) |
|
st.write("Top predicted noise classes:") |
|
for cls, prob in noise_predictions: |
|
st.write(f"{cls}: {prob:.2f}") |
|
except Exception as e: |
|
st.error(f"Noise classification failed: {e}") |
|
|