Upload 2 files
Browse files- speaker_diarization.py +12 -0
- vad_segmentation.py +19 -0
speaker_diarization.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pyannote.audio import Pipeline
|
2 |
+
import os
|
3 |
+
|
4 |
+
hf_token = os.environ.get("HF_TOKEN")
|
5 |
+
|
6 |
+
diarization_pipeline = Pipeline.from_pretrained(
|
7 |
+
"pyannote/speaker-diarization-3.1",
|
8 |
+
use_auth_token=hf_token
|
9 |
+
)
|
10 |
+
|
11 |
+
def diarize_speakers(audio_path):
|
12 |
+
return diarization_pipeline(audio_path)
|
vad_segmentation.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pyannote.audio import Model
|
3 |
+
from pyannote.audio.pipelines import VoiceActivityDetection
|
4 |
+
hf_token = os.environ.get("HF_TOKEN")
|
5 |
+
|
6 |
+
model = Model.from_pretrained("pyannote/segmentation",
|
7 |
+
use_auth_token=hf_token)
|
8 |
+
|
9 |
+
|
10 |
+
vad_pipeline = VoiceActivityDetection(segmentation=model)
|
11 |
+
HYPER_PARAMETERS = {
|
12 |
+
"onset": 0.5, "offset": 0.5,
|
13 |
+
"min_duration_on": 0.0,
|
14 |
+
"min_duration_off": 0.0
|
15 |
+
}
|
16 |
+
|
17 |
+
vad_pipeline.instantiate(HYPER_PARAMETERS)
|
18 |
+
def vad_segmentation(input_path, output_path, aggressiveness=2):
|
19 |
+
return vad_pipeline(input_path)
|