import streamlit as st import librosa import soundfile as sf import tempfile import os from utils.noise_removal import remove_noise from utils.vad_segmentation import detect_speech_segments from utils.speaker_diarization import diarize_speakers from utils.noise_classification import classify_noise st.set_page_config(page_title="Audio Analyzer", layout="wide") st.title(" Audio Analysis Pipeline") uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"]) if uploaded_file: with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: tmp.write(uploaded_file.read()) tmp_path = tmp.name st.audio(tmp_path, format='audio/wav') st.subheader("1️⃣ Noise Removal") denoised_path = tmp_path.replace(".wav", "_denoised.wav") remove_noise(tmp_path, denoised_path) st.audio(denoised_path, format="audio/wav") st.subheader("2️⃣ Speech Segmentation") speech_segments = detect_speech_segments(denoised_path) st.write(f"Detected {len(speech_segments)} speech segments.") for i, (start, end) in enumerate(speech_segments[:5]): st.write(f"Segment {i+1}: {start:.2f}s to {end:.2f}s") st.subheader("3️⃣ Speaker Diarization") diarization = diarize_speakers(denoised_path) st.text("Speakers detected:") for turn, _, speaker in diarization.itertracks(yield_label=True): st.write(f"{turn.start:.2f}s - {turn.end:.2f}s: {speaker}") st.subheader("4️⃣ Noise Classification") noise_predictions = classify_noise(denoised_path) st.write("Top predicted noise classes:") for cls, prob in noise_predictions: st.write(f"{cls}: {prob:.2f}")