import streamlit as st import tempfile import os from pydub import AudioSegment from utils.noise_removal import remove_noise from utils.vad_segmentation import vad_segmentation from utils.speaker_diarization import diarize_speakers from utils.noise_classification import classify_noise st.set_page_config(page_title="Audio Analyzer", layout="wide") st.title("Audio Analysis Pipeline") uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "m4a", "mp4a"]) def prepare_audio(uploaded_file): file_ext = uploaded_file.name.split('.')[-1].lower() with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as out_wav: if file_ext == "wav": out_wav.write(uploaded_file.read()) else: audio = AudioSegment.from_file(uploaded_file, format=file_ext) audio.export(out_wav.name, format="wav") return out_wav.name if uploaded_file: st.audio(uploaded_file, format="audio/wav") with st.spinner("🔄 Preparing audio..."): tmp_path = prepare_audio(uploaded_file) try: st.subheader("1️⃣ Noise Removal") denoised_path = tmp_path.replace(".wav", "_denoised.wav") with st.spinner("Removing noise..."): remove_noise(tmp_path, denoised_path) st.audio(denoised_path, format="audio/wav") except Exception as e: st.error(f" Noise removal failed: {e}") try: st.subheader("2️⃣ Speech Segmentation") with st.spinner("Running Voice Activity Detection..."): speech_annotation = vad_segmentation(denoised_path) segments = [(seg.start, seg.end) for seg in speech_annotation.itersegments()] st.write(f" Detected {len(segments)} speech segments.") for i, (start, end) in enumerate(segments[:5]): st.write(f"Segment {i+1}: {start:.2f}s to {end:.2f}s") except Exception as e: st.error(f" VAD failed: {e}") try: st.subheader("3️⃣ Speaker Diarization") with st.spinner("Diarizing speakers..."): diarization = diarize_speakers(denoised_path) st.text(" Speakers detected:") for turn, _, speaker in diarization.itertracks(yield_label=True): st.write(f"{turn.start:.2f}s - {turn.end:.2f}s: Speaker {speaker}") except Exception as e: st.error(f"Speaker diarization failed: {e}") try: st.subheader("4️⃣ Noise Classification") with st.spinner("Classifying background noise..."): noise_predictions = classify_noise(denoised_path) st.write("Top predicted noise classes:") for cls, prob in noise_predictions: st.write(f"{cls}: {prob:.2f}") except Exception as e: st.error(f"Noise classification failed: {e}")