Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
from textblob import TextBlob | |
import joblib | |
import matplotlib.pyplot as plt | |
import datetime | |
# Load the data | |
def load_data(): | |
stock_data = pd.read_csv('data/stock_yfinance_data.csv') | |
tweets_data = pd.read_csv('data/stock_tweets.csv') | |
# Convert the Date columns to datetime | |
stock_data['Date'] = pd.to_datetime(stock_data['Date']) | |
tweets_data['Date'] = pd.to_datetime(tweets_data['Date']).dt.date | |
# Perform sentiment analysis on tweets | |
def get_sentiment(tweet): | |
analysis = TextBlob(tweet) | |
return analysis.sentiment.polarity | |
tweets_data['Sentiment'] = tweets_data['Tweet'].apply(get_sentiment) | |
# Aggregate sentiment by date and stock | |
daily_sentiment = tweets_data.groupby(['Date', 'Stock Name']).mean(numeric_only=True).reset_index() | |
# Convert the Date column in daily_sentiment to datetime64[ns] | |
daily_sentiment['Date'] = pd.to_datetime(daily_sentiment['Date']) | |
# Merge stock data with sentiment data | |
merged_data = pd.merge(stock_data, daily_sentiment, how='left', left_on=['Date', 'Stock Name'], right_on=['Date', 'Stock Name']) | |
# Fill missing sentiment values with 0 (neutral sentiment) | |
merged_data['Sentiment'].fillna(0, inplace=True) | |
# Sort the data by date | |
merged_data.sort_values(by='Date', inplace=True) | |
# Create lagged features | |
merged_data['Prev_Close'] = merged_data.groupby('Stock Name')['Close'].shift(1) | |
merged_data['Prev_Sentiment'] = merged_data.groupby('Stock Name')['Sentiment'].shift(1) | |
# Create moving averages | |
merged_data['MA7'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=7).mean()) | |
merged_data['MA14'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=14).mean()) | |
# Create daily price changes | |
merged_data['Daily_Change'] = merged_data['Close'] - merged_data['Prev_Close'] | |
# Create volatility | |
merged_data['Volatility'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=7).std()) | |
# Drop rows with missing values | |
merged_data.dropna(inplace=True) | |
return merged_data | |
data = load_data() | |
stock_names = data['Stock Name'].unique() | |
# Load the best model | |
model_filename = 'model/best_model.pkl' | |
model = joblib.load(model_filename) | |
st.title("Stock Price Prediction Using Sentiment Analysis") | |
# User input for stock data | |
st.header("Input Stock Data") | |
selected_stock = st.selectbox("Select Stock Name", stock_names) | |
days_to_predict = st.number_input("Number of Days to Predict", | |
min_value=1, max_value=30, value=10) | |
# Get the latest data for the selected stock | |
latest_data = data[data['Stock Name'] == selected_stock].iloc[-1] | |
prev_close = latest_data['Close'] | |
prev_sentiment = latest_data['Sentiment'] | |
ma7 = latest_data['MA7'] | |
ma14 = latest_data['MA14'] | |
daily_change = latest_data['Daily_Change'] | |
volatility = latest_data['Volatility'] | |
# Display the latest stock data in a table | |
latest_data_df = pd.DataFrame({ | |
'Metric': ['Previous Close Price', 'Previous Sentiment', '7-day Moving Average', '14-day Moving Average', 'Daily Change', 'Volatility'], | |
'Value': [prev_close, prev_sentiment, ma7, ma14, daily_change, volatility] | |
}) | |
st.write("Latest Stock Data:") | |
st.write(latest_data_df) | |
st.write("Use the inputs above to predict the next days close prices of the stock.") | |
if st.button("Predict"): | |
predictions = [] | |
latest_date = datetime.datetime.now() | |
for i in range(days_to_predict): | |
X_future = pd.DataFrame({ | |
'Prev_Close': [prev_close], | |
'Prev_Sentiment': [prev_sentiment], | |
'MA7': [ma7], | |
'MA14': [ma14], | |
'Daily_Change': [daily_change], | |
'Volatility': [volatility] | |
}) | |
next_day_prediction = model.predict(X_future)[0] | |
predictions.append(next_day_prediction) | |
# Update features for next prediction | |
prev_close = next_day_prediction | |
ma7 = (ma7 * 6 + next_day_prediction) / 7 # Simplified rolling calculation | |
ma14 = (ma14 * 13 + next_day_prediction) / 14 # Simplified rolling calculation | |
daily_change = next_day_prediction - prev_close | |
# st.write(f"Predicted next {days_to_predict} days close prices: {predictions}") | |
# Prepare prediction data for display | |
# Prepare prediction data for display | |
prediction_dates = pd.date_range(start=latest_date + pd.Timedelta(days=1), periods=days_to_predict) | |
prediction_df = pd.DataFrame({ | |
'Date': prediction_dates, | |
'Predicted Close Price': predictions | |
}) | |
st.subheader("Predicted Prices") | |
st.write(prediction_df) | |
# Plotting the results | |
st.subheader("Prediction Chart") | |
plt.figure(figsize=(10, 6)) | |
plt.plot(prediction_df['Date'], prediction_df['Predicted Close Price'], marker='o', linestyle='--', label="Predicted Close Price") | |
plt.xlabel("Date") | |
plt.ylabel("Close Price") | |
plt.title(f"{selected_stock} Predicted Close Prices") | |
plt.legend() | |
st.pyplot(plt) | |