File size: 808 Bytes
05086cb
318e432
05086cb
318e432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import gradio as gr
from transformers import TextClassificationPipeline, AutoTokenizer, AutoModelForSequenceClassification

# Load a pre-trained text classification model 
model_name = "KoalaAI/Text-Moderation" 
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# Create a TextClassificationPipeline
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)

# Define the classify_text function using the pipeline
def classify_text(text):
    prediction = pipe(text)[0]["label"]
    return prediction

# Create a Gradio interface
iface = gr.Interface(
    fn=classify_text,
    inputs=gr.inputs.Textbox(label="Enter text"),
    outputs=gr.outputs.Label(label="Predicted classes"),
)

# Launch the Gradio app
iface.launch()