Spaces:
Build error
Build error
File size: 52,535 Bytes
1de8821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 |
import cv2
import time
import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.patches import ConnectionPatch
from controller.controller import AttentionControl
from einops import repeat, rearrange
from typing import Tuple, Callable
from vidtome.patch import PCA_token
from utils.flow_utils import coords_grid
def do_nothing(x: torch.Tensor, mode: str = None):
return x
def mps_gather_workaround(input, dim, index):
if input.shape[-1] == 1:
return torch.gather(
input.unsqueeze(-1),
dim - 1 if dim < 0 else dim,
index.unsqueeze(-1)
).squeeze(-1)
else:
return torch.gather(input, dim, index)
def visualize_flow_correspondence(src_img: torch.Tensor, tar_img: torch.Tensor, flow: torch.Tensor, flow_confid: torch.Tensor,
ratio: float, H: int=64, out: str = "correspondence.png") -> Tuple[Callable, Callable, dict]:
if len(src_img.shape) == 4:
B, C, H, W = src_img.shape
src_img = rearrange(src_img, 'b c h w -> b (h w) c', h=H)
tar_img = rearrange(tar_img, 'b c h w -> b (h w) c', h=H)
else:
B, N, C = src_img.shape
W = N // H
src_PCA_token = PCA_token(src_img, token_h=H)
tar_PCA_token = PCA_token(tar_img, token_h=H)
# Compute pre-frame token number. N = unm_pre + tnum * F.
gather = mps_gather_workaround if src_img.device.type == "mps" else torch.gather
with torch.no_grad():
# Cosine similarity between src and dst tokens
a = src_img / src_img.norm(dim=-1, keepdim=True)
b = tar_img / tar_img.norm(dim=-1, keepdim=True)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], int(a.shape[1] * ratio))
print(f"[INFO] flow r {r} ")
# Find the most similar greedily
flow_confid = rearrange(flow_confid, 'b h w -> b (h w)')
edge_idx = flow_confid.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
src_xy = [(id.item() % W, id.item() // W) for id in src_idx[0]]
grid = coords_grid(B, H, W).to(flow.device) + flow # [B, 2, H, W]
tar_xy = [(grid[0, 0, y, x].clamp(0, W-1).item(), \
grid[0, 1, y, x].clamp(0, H-1).item()) for (x, y) in src_xy]
# tar_idx = torch.tensor([y * W + x for (x, y) in tar_xy]).to(src_idx.device)
fig, ax = plt.subplots(1, 2, figsize=(8, 3))
# Display the source and target images
ax[0].imshow(src_PCA_token, cmap='gray')
ax[1].imshow(tar_PCA_token, cmap='gray')
ax[0].axis('off')
ax[1].axis('off')
colors = cm.Greens(np.linspace(0.5, 1, len(src_xy)))
# Draw lines connecting corresponding points
for (x1, y1), (x2, y2), color in zip(src_xy, tar_xy, colors):
ax[0].plot(x1, y1, marker='o', color=color, markersize=0.5) # red dot in source image
ax[1].plot(x2, y2, marker='o', color=color, markersize=1) # red dot in target image
con = ConnectionPatch(xyA=(x2, y2), xyB=(x1, y1), coordsA="data", coordsB="data",
axesA=ax[1], axesB=ax[0], color=color, linewidth=0.2)
ax[1].add_artist(con)
# plt.tight_layout()
plt.savefig(out, bbox_inches="tight")
plt.close()
def visualize_correspondence_score(src_img: torch.Tensor, tar_img: torch.Tensor, score: torch.Tensor,
ratio: float, H: int=64, out: str = "correspondence_idx.png") -> Tuple[Callable, Callable, dict]:
if len(src_img.shape) == 4:
B, C, H, W = src_img.shape
src_img = rearrange(src_img, 'b c h w -> b (h w) c', h=H)
tar_img = rearrange(tar_img, 'b c h w -> b (h w) c', h=H)
else:
B, N, C = src_img.shape
W = N // H
src_PCA_token = PCA_token(src_img, token_h=H)
tar_PCA_token = PCA_token(tar_img, token_h=H)
with torch.no_grad():
# Can't reduce more than the # tokens in src
r = min(N, int(N * ratio))
node_max, node_idx = score.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
# src_idx = edge_idx[0, -r:, 0] # Merged Tokens
src_idx = edge_idx[0, :r, 0] # Merged Tokens
tar_idx = torch.gather(node_idx[0], dim=0, index=src_idx)
src_idx = src_idx[:r]
tar_idx = tar_idx[:r]
# x = src_idx % W
# y = src_idx // W
# src_xy
src_xy = [(id.item() % W, id.item() // W) for id in src_idx]
tar_xy = [(id.item() % W, id.item() // W) for id in tar_idx]
fig, ax = plt.subplots(1, 2, figsize=(8, 3))
# Display the source and target images
ax[0].imshow(src_PCA_token, cmap='gray')
ax[1].imshow(tar_PCA_token, cmap='gray')
colors = cm.cool(np.linspace(0, 1, len(src_xy)))
# Draw lines connecting corresponding points
for (x1, y1), (x2, y2), color in zip(src_xy, tar_xy, colors):
ax[0].plot(x1, y1, marker='o', color=color, markersize=1) # red dot in source image
ax[1].plot(x2, y2, marker='o', color=color, markersize=1) # red dot in target image
con = ConnectionPatch(xyA=(x2, y2), xyB=(x1, y1), coordsA="data", coordsB="data",
axesA=ax[1], axesB=ax[0], color=color, linewidth=0.2)
ax[1].add_artist(con)
# plt.tight_layout()
plt.savefig(out, bbox_inches="tight")
plt.close()
def visualize_cosine_correspondence(src_img: torch.Tensor, tar_img: torch.Tensor,
ratio: float, H: int=64, out: str = "correspondence.png",
flow: torch.Tensor=None, flow_confid: torch.Tensor=None,
controller: AttentionControl=None ) -> Tuple[Callable, Callable, dict]:
if len(src_img.shape) == 4:
B, C, H, W = src_img.shape
src_img = rearrange(src_img, 'b c h w -> b (h w) c', h=H)
tar_img = rearrange(tar_img, 'b c h w -> b (h w) c', h=H)
else:
B, N, C = src_img.shape
W = N // H
# import ipdb; ipdb.set_trace()
src_PCA_token = PCA_token(src_img, token_h=H)
tar_PCA_token = PCA_token(tar_img, token_h=H)
# Compute pre-frame token number. N = unm_pre + tnum * F.
gather = mps_gather_workaround if src_img.device.type == "mps" else torch.gather
with torch.no_grad():
# Cosine similarity between src and dst tokens
a = src_img / src_img.norm(dim=-1, keepdim=True)
b = tar_img / tar_img.norm(dim=-1, keepdim=True)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], int(a.shape[1] * ratio))
print(f"[INFO] cosine r {r} ")
# Find the most similar greedily
# import ipdb; ipdb.set_trace()
# scores *= controller.distances[H][:,:scores.shape[1]]
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., int(4*r):int(5*r), :] # Merged Tokens
# unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
# src_idx = edge_idx[..., :r, :] # Merged Tokens
tar_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
src_xy = [(id.item() % W, id.item() // W) for id in src_idx[0]]
tar_xy = [(id.item() % W, id.item() // W) for id in tar_idx[0]]
fig, ax = plt.subplots(1, 2, figsize=(8, 3))
# Display the source and target images
ax[0].imshow(src_PCA_token, cmap='spring')
ax[1].imshow(tar_PCA_token, cmap='spring')
# Hide the axis labels
ax[0].axis('off')
ax[1].axis('off')
# colors = cm.Reds(np.linspace(0.5, 1, len(src_xy)))
colors = cm.cool(np.linspace(0.5, 1, len(src_xy)))
# Draw lines connecting corresponding points
for (x1, y1), (x2, y2), color in zip(src_xy, tar_xy, colors):
# color = "orangered"
ax[0].plot(x1, y1, marker='o', color=color, markersize=0.5) # red dot in source image
ax[1].plot(x2, y2, marker='o', color=color, markersize=1) # red dot in target image
con = ConnectionPatch(xyA=(x2, y2), xyB=(x1, y1), coordsA="data", coordsB="data",
axesA=ax[1], axesB=ax[0], color=color, linewidth=0.2)
ax[1].add_artist(con)
# plt.tight_layout()
plt.savefig(out, bbox_inches="tight")
plt.close()
def visualize_correspondence(src_img: torch.Tensor, tar_img: torch.Tensor,
ratio: float, H: int=64, out: str = "correspondence.png",
flow: torch.Tensor=None, flow_confid: torch.Tensor=None,
controller: AttentionControl=None ) -> Tuple[Callable, Callable, dict]:
if len(src_img.shape) == 4:
B, C, H, W = src_img.shape
src_img = rearrange(src_img, 'b c h w -> b (h w) c', h=H)
tar_img = rearrange(tar_img, 'b c h w -> b (h w) c', h=H)
else:
B, N, C = src_img.shape
W = N // H
src_PCA_token = PCA_token(src_img, token_h=H, n=1)
tar_PCA_token = PCA_token(tar_img, token_h=H, n=1)
# import ipdb; ipdb.set_trace()
if abs(np.mean(src_PCA_token[:20, :20]) - np.mean(tar_PCA_token[:20, :20])) > 50:
if np.mean(src_PCA_token[:20, :20]) > np.mean(tar_PCA_token[:20, :20]):
src_PCA_token = 255 - src_PCA_token
else:
tar_PCA_token = 255 - tar_PCA_token
print(f"[INFO] src_PCA_token mean {np.mean(src_PCA_token[:20, :20])} tar_PCA_token mean {np.mean(tar_PCA_token[:20, :20])} ")
# Compute pre-frame token number. N = unm_pre + tnum * F.
gather = mps_gather_workaround if src_img.device.type == "mps" else torch.gather
with torch.no_grad():
# Cosine similarity between src and dst tokens
a = src_img / src_img.norm(dim=-1, keepdim=True)
b = tar_img / tar_img.norm(dim=-1, keepdim=True)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], int(a.shape[1] * ratio))
# Find the most similar greedily
# import ipdb; ipdb.set_trace()
print(f"[INFO] no distance weigthed ... ")
# scores *= controller.distances[H][:,:scores.shape[1]]
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
# unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
# src_idx = edge_idx[..., :r, :] # Merged Tokens
tar_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
src_xy = [(id.item() % W, id.item() // W) for id in src_idx[0]]
tar_xy = [(id.item() % W, id.item() // W) for id in tar_idx[0]]
# Find the most similar greedily
flow_confid = rearrange(flow_confid, 'b h w -> b (h w)')
edge_idx = flow_confid.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
flow_src_xy = [(id.item() % W, id.item() // W) for id in src_idx[0]]
# import ipdb; ipdb.set_trace()
grid = coords_grid(B, H, W).to(flow.device) + flow # [B, 2, H, W]
flow_tar_xy = [(grid[0, 0, y, x].clamp(0, W-1).item(), \
grid[0, 1, y, x].clamp(0, H-1).item()) for (x, y) in flow_src_xy]
fig, ax = plt.subplots(2, 2, figsize=(8, 4))
if len(controller.decoded_imgs):
step = out.split("/")[-1].split(".")[0]
_, h_, w_, _ = controller.decoded_imgs[0].shape
mul = h_ // H
decoded_img = controller.decoded_imgs[1]
decoded_img = decoded_img[0, :, :int(W * mul), :]
if step == "49":
decoded_img = cv2.imread("/project/DiffBVR_eval/DAVIS/BDx8_results/DiffBIR_ours/cows/00001.png")
decoded_img = cv2.resize(decoded_img, (W, H))
ax[0, 0].imshow(decoded_img, aspect='auto')
decoded_img = controller.decoded_imgs[2]
decoded_img = decoded_img[0, :, :int(W * mul), :]
if step == "49":
decoded_img = cv2.imread("/project/DiffBVR_eval/DAVIS/BDx8_results/DiffBIR_ours/cows/00002.png")
decoded_img = cv2.resize(decoded_img, (W, H))
ax[0, 1].imshow(decoded_img, aspect='auto')
else:
# Display the source and target images
ax[0, 0].imshow(src_PCA_token, cmap='ocean', aspect='auto')
ax[0, 1].imshow(tar_PCA_token, cmap='ocean', aspect='auto')
ax[0, 0].axis('off')
ax[0, 1].axis('off')
ax[1, 0].imshow(src_PCA_token, cmap='Blues', aspect='auto')
ax[1, 1].imshow(tar_PCA_token, cmap='Blues', aspect='auto')
# ax[1, 0].imshow(np.mean(src_PCA_token, -1), cmap='ocean')
# ax[1, 1].imshow(np.mean(tar_PCA_token, -1), cmap='ocean')
# Hide the axis labels
ax[1, 0].axis('off')
ax[1, 1].axis('off')
colors = cm.Greens(np.linspace(0.25, 0.75, len(flow_src_xy)))
# Draw lines connecting corresponding points
for (x1, y1), (x2, y2), color in zip(flow_src_xy, flow_tar_xy, colors):
# color = "mediumslateblue"
# ax[1, 0].plot(x1, y1, marker='o', color=color, markersize=1) # red dot in source image
ax[1, 1].plot(x2, y2, marker='o', color=color, markersize=1) # red dot in target image
con = ConnectionPatch(xyA=(x2, y2), xyB=(x1, y1), coordsA="data", coordsB="data",
axesA=ax[1, 1], axesB=ax[1, 0], color=color, linewidth=0.2)
ax[1, 1].add_artist(con)
# plt.tight_layout()
colors = cm.Reds(np.linspace(0.25, 0.75, len(src_xy)))
# Draw lines connecting corresponding points
for (x1, y1), (x2, y2), color in zip(src_xy, tar_xy, colors):
# color = "orangered"
# ax[1, 0].plot(x1, y1, marker='o', color=color, markersize=1) # red dot in source image
ax[1, 1].plot(x2, y2, marker='o', color=color, markersize=1) # red dot in target image
con = ConnectionPatch(xyA=(x2, y2), xyB=(x1, y1), coordsA="data", coordsB="data",
axesA=ax[1, 1], axesB=ax[1, 0], color=color, linewidth=0.2)
ax[1, 1].add_artist(con)
plt.subplots_adjust(wspace=0.05, hspace=0.1)
plt.savefig(out, bbox_inches="tight")
plt.close()
# For Local Token Merging
def bipartite_soft_matching_randframe(metric: torch.Tensor,
F: int, ratio: float, unm_pre: int, generator: torch.Generator=None,
target_stride: int = 4, align_batch: bool = False,
merge_mode: str = "replace", H: int=64,
flow_merge: bool=False,
controller: AttentionControl=None) -> Tuple[Callable, Callable, dict]:
"""
Partitions the multi-frame tokens into src and dst and merges ratio of src tokens from src to dst.
Dst tokens are partitioned by choosing one random frame.
Args:
- metric [B, N, C]: metric to use for similarity.
- F: frame number.
- ratio: ratio of src tokens to be removed (by merging).
- unm_pre: number of src tokens not merged at previous ToMe. Pre-sequence: [unm_pre|F_0|F_1|...]
- generator: random number generator
- target_stride: stride of target frame.
- align_batch: whether to align similarity matching maps of samples in the batch. True when using PnP.
- merge_mode: how to merge tokens. "mean": tokens -> Mean(src_token, dst_token); "replace": tokens -> dst_token.
Returns:
Merge and unmerge operation according to the matching result. Return a dict including other values.
"""
B, N, _ = metric.shape
A = N // F
W = A // H
# Compute pre-frame token number. N = unm_pre + tnum * F.
tnum = (N - unm_pre) // F
if ratio <= 0:
return do_nothing, do_nothing, {"unm_num": tnum}
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
# Prepare idx buffer. Ignore previous unmerged tokens.
idx_buffer = torch.arange(
N - unm_pre, device=metric.device, dtype=torch.int64)
# Select the random target frame.
target_stride = min(target_stride, F)
# import ipdb; ipdb.set_trace()
if controller is None:
randf = torch.randint(0, target_stride, torch.Size(
[1]), generator=generator, device=generator.device)
else:
randf = torch.tensor(target_stride // 2).to(metric.device)
# print(f"[INFO] randf: {randf} ... ")
dst_select = ((torch.div(idx_buffer, tnum, rounding_mode='floor')) %
target_stride == randf).to(torch.bool)
# a_idx: src index. b_idx: dst index
a_idx = idx_buffer[None, ~dst_select, None] + unm_pre
b_idx = idx_buffer[None, dst_select, None] + unm_pre
# import ipdb; ipdb.set_trace()
# Add unmerged tokens to dst.
unm_buffer = torch.arange(unm_pre, device=metric.device, dtype=torch.int64)[
None, :, None]
b_idx = torch.cat([b_idx, unm_buffer], dim=1)
# We're finished with these
del idx_buffer, unm_buffer
num_dst = b_idx.shape[1]
def split(x):
# Split src, dst tokens
b, n, c = x.shape
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
# print(f"[INFO] {x.shape} {num_dst}")
return src, dst
# if flow is not None:
# start = time.time()
# if len(flow) != F-1:
# mid = F // 2
# flow_confid = flow_confid[:mid] + flow_confid[mid+1:]
# flow = flow[:mid] + flow[mid+1:]
# flow_confid = torch.cat(flow_confid, dim=0)
# flow = torch.cat(flow, dim=0)
# flow_confid = rearrange(flow_confid, 'b h w -> 1 (b h w)')
# print(f"[INFO] flow time {time.time() - start}")
# Cosine similarity between src and dst tokens
metric = metric / metric.norm(dim=-1, keepdim=True)
# import ipdb; ipdb.set_trace()
a, b = split(metric)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], int(a.shape[1] * ratio))
if align_batch:
# Cat scores of all samples in the batch. When using PnP, samples are (src, neg, pos).
# Find the most similar greedily among all samples.
scores = torch.cat([*scores], dim=-1)
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None],
dim=-2, index=src_idx) % num_dst # Map index to (0, num_dst - 1)
# Use the same matching result for all samples
unm_idx = unm_idx.expand(B, -1, -1)
src_idx = src_idx.expand(B, -1, -1)
dst_idx = dst_idx.expand(B, -1, -1)
else:
if flow_merge:
# print(f"[INFO] flow merge ... ")
# start = time.time()
# edge_idx = flow_confid.argsort(dim=-1, descending=True)[..., None]
# unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
# src_idx = edge_idx[..., :r, :] # Merged Tokens
# src_idx_tensor = src_idx[0, : ,0]
# f = src_idx_tensor // A
# id = src_idx_tensor % A
# x = id % W
# y = id // W
# # Stack the results into a 2D tensor
# src_fxy = torch.stack((f, x, y), dim=1)
# # import ipdb; ipdb.set_trace()
# grid = coords_grid(F-1, H, W).to(flow.device) + flow # [F-1, 2, H, W]
# x = grid[src_fxy[:, 0], 0, src_fxy[:, 2], src_fxy[:, 1]].clamp(0, W-1).long()
# y = grid[src_fxy[:, 0], 1, src_fxy[:, 2], src_fxy[:, 1]].clamp(0, H-1).long()
# tar_xy = torch.stack((x, y), dim=1)
# tar_idx = y * W + x
# tar_idx = rearrange(tar_idx, ' d -> 1 d 1')
# print(f"[INFO] {src_idx[0, 10, 0]} {tar_idx[0, 10, 0]}")
unm_idx = controller.flow_correspondence[H][0][:, r:, :]
src_idx = controller.flow_correspondence[H][0][:, :r, :]
tar_idx = controller.flow_correspondence[H][1][:, :r, :]
# score[src_idx[i], tar_idx[i]] = flow_confid[src_idx[i]]
# scores[:, src_idx[0, :, 0], tar_idx[0, :, 0]] = flow_confid[0, src_idx[0, :, 0]]
# import ipdb; ipdb.set_trace()
else:
''' distacne weighted '''
# # if H == 64:
# # Create a tensor that represents the coordinates of each pixel
# start = time.time()
# y, x = torch.meshgrid(torch.arange(H), torch.arange(W))
# coords = torch.stack((y, x), dim=-1).float().to(metric.device)
# coords = rearrange(coords, 'h w c -> (h w) c')
# # Calculate the Euclidean distance between all pixels
# distances = torch.cdist(coords, coords)
# radius = W // 30
# radius = 1 if radius == 0 else radius
# # print(f"[INFO] W: {W} Radius: {radius} ")
# distances //= radius
# distances = torch.exp(-distances)
# # distances += torch.diag_embed(torch.ones(A)).to(metric.device)
# distances = repeat(distances, 'h a -> 1 (b h) a', b=F-1)
# print(f"[INFO] {W} {torch.mean(distances)} {torch.std(distances)}")
# node_max, node_idx = scores.max(dim=-1)
# scores *= distances
# print(f"[INFO] distance not weighted ... ")
if controller is not None:
if H not in controller.distances:
controller.set_distance(F-1, H, W, W//30, metric.device)
print(f"[INFO] distance weighted ... ")
# print(f"[INFO] controller distance time {time.time() - start}")
scores *= controller.distances[H]
# Find the most similar greedily
''' node_idx: src_idx to tar_idx '''
node_max, node_idx = scores.max(dim=-1)
# src_idx_tensor = torch.arange(node_max.shape[1], device=metric.device, dtype=torch.int64)
# id = src_idx_tensor % A
# x = id % W
# y = id // W
# src_xy = torch.stack((x, y), dim=1)
# tar_idx_tensor = node_idx[0, :]
# x = tar_idx_tensor % W
# y = tar_idx_tensor // W
# tar_xy = torch.stack((x, y), dim=1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
''' idx in all src tokens '''
src_idx = edge_idx[..., :r, :] # Merged Tokens
tar_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
# correspond_dis = gather(distance[None, ..., None], dim=-2, index=src_idx)
# import ipdb; ipdb.set_trace()
# import ipdb; ipdb.set_trace()
# src_idx_tensor = src_idx[0, : ,0]
# id = src_idx_tensor % A
# x = id % W
# y = id // W
# src_xy = torch.stack((x, y), dim=1)
# tar_idx_tensor = tar_idx[0, : ,0]
# x = tar_idx_tensor % W
# y = tar_idx_tensor // W
# tar_xy = torch.stack((x, y), dim=1)
# cosine_delta = torch.sum(torch.norm((src_xy - tar_xy).float(), dim=-1))
# import ipdb; ipdb.set_trace()
# print("&&&")
# if flow is not None:
# print(f"[INFO] Flow Delta: {flow_delta.item()} Cosine Delta: {cosine_delta.item()}")
# else:
# print(f"Cosine Delta: {cosine_delta.item()}")
def merge(x: torch.Tensor, mode=None) -> torch.Tensor:
# Merge tokens according to matching result.
src, dst = split(x)
n, t1, c = src.shape
u_idx, s_idx, t_idx = unm_idx, src_idx, tar_idx
# print(f"[INFO] {s_idx[0, 10, 0]} {t_idx[0, 10, 0]}")
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
mode = mode if mode is not None else merge_mode
if mode != "replace":
src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
# In other mode such as mean, combine matched src and dst tokens.
dst = dst.scatter_reduce(-2, t_idx.expand(-1, -1, c),
src, reduce=mode, include_self=True)
# In replace mode, just cat unmerged tokens and dst tokens. Ignore src tokens.
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor, **kwarg) -> torch.Tensor:
# Unmerge tokens to original size according to matching result.
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
b, _, c = unm.shape
u_idx, s_idx, t_idx = unm_idx, src_idx, tar_idx
# Restored src tokens take value from dst tokens
src = gather(dst, dim=-2, index=t_idx.expand(-1, -1, c))
# Combine back to the original shape
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
# Scatter dst tokens
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
# Scatter unmerged tokens
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
dim=1, index=u_idx).expand(-1, -1, c), src=unm)
# Scatter src tokens
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
dim=1, index=s_idx).expand(-1, -1, c), src=src)
return out
# Return number of tokens not merged.
ret_dict = {"scores": scores, "unm_num": unm_idx.shape[1] if unm_idx.shape[1] is not None else 0}
return merge, unmerge, ret_dict
def bipartite_soft_matching_random2d_hier(metric: torch.Tensor, frame_num: int, ratio: float, unm_pre: int, generator: torch.Generator, target_stride: int = 4, adhere_src: bool = False, merge_mode: str = "replace", scores = None, coord = None, rec_field = 2) -> Tuple[Callable, Callable]:
"""
Partitions the tokens into src and dst and merges r tokens from src to dst.
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
Args:
- metric [B, N, C]: metric to use for similarity
- w: image width in tokens
- h: image height in tokens
- sx: stride in the x dimension for dst, must divide w
- sy: stride in the y dimension for dst, must divide h
- r: number of tokens to remove (by merging)
- no_rand: if true, disable randomness (use top left corner only)
- rand_seed: if no_rand is false, and if not None, sets random seed.
"""
B, N, _ = metric.shape
F = frame_num
nf = (N - unm_pre) // F
if ratio <= 0:
return do_nothing, do_nothing
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
idx_buffer = torch.arange(N - unm_pre, device=metric.device, dtype=torch.int64)
# randn = torch.randint(0, F, torch.Size([nf])).to(idx_buffer) * nf
# dst_indexes = torch.arange(nf, device=metric.device, dtype=torch.int64) + randn
# dst_select = torch.zeros_like(idx_buffer).to(torch.bool)
# dst_select[dst_indexes] = 1
max_f = min(target_stride, F)
randn = torch.randint(0, max_f, torch.Size([1]), generator=generator, device = generator.device)
# randn = 0
dst_select = ((torch.div(idx_buffer, nf, rounding_mode='floor')) % max_f == randn).to(torch.bool)
# dst_select = ((idx_buffer // nf) == 0).to(torch.bool)
a_idx = idx_buffer[None, ~dst_select, None] + unm_pre
b_idx = idx_buffer[None, dst_select, None] + unm_pre
unm_buffer = torch.arange(unm_pre, device=metric.device, dtype=torch.int64)[None,:,None]
b_idx = torch.cat([b_idx, unm_buffer], dim = 1)
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
# We're finished with these
del idx_buffer, unm_buffer
num_dst = b_idx.shape[1]
def split(x):
b, n, c = x.shape
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
def split_coord(coord):
b, n, c = coord.shape
src = gather(coord, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(coord, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
# Cosine similarity between A and B
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
if coord is not None:
src_coord, dst_coord = split_coord(coord)
mask = torch.norm(src_coord[:,:,None,:] - dst_coord[:,None,:,:], dim=-1) > rec_field
scores = a @ b.transpose(-1, -2)
if coord is not None:
scores[mask] = 0
# Can't reduce more than the # tokens in src
r = int(a.shape[1] * ratio)
r = min(a.shape[1], r)
if adhere_src:
# scores = torch.sum(scores, dim=0)
scores = torch.cat([*scores], dim = -1)
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
unm_idx = unm_idx.expand(B, -1, -1)
src_idx = src_idx.expand(B, -1, -1)
dst_idx = dst_idx.expand(B, -1, -1)
else:
# scores = torch.cat([*scores][1:], dim = -1)
# node_max, node_idx = scores.max(dim=-1)
# edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
# unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
# src_idx = edge_idx[..., :r, :] # Merged Tokens
# dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
# unm_idx = unm_idx.expand(B, -1, -1)
# src_idx = src_idx.expand(B, -1, -1)
# dst_idx = dst_idx.expand(B, -1, -1)
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
# if adhere_src:
# unm_idx[:,...] = unm_idx[0:1]
# src_idx[:,...] = src_idx[0:1]
# dst_idx[:,...] = dst_idx[0:1]
def merge(x: torch.Tensor, mode=None, b_select = None, **kwarg) -> torch.Tensor:
src, dst = split(x)
n, t1, c = src.shape
if b_select is not None:
if not isinstance(b_select, list):
b_select = [b_select]
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
else:
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
mode = mode if mode is not None else merge_mode
if mode != "replace":
dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c), src, reduce=mode, include_self=True)
# dst = dst.scatter(-2, dst_idx.expand(n, r, c), src, reduce='add')
# dst_cnt = torch.ones_like(dst)
# src_ones = torch.ones_like(src)
# dst_cnt = dst_cnt.scatter(-2, dst_idx.expand(n, r, c), src_ones, reduce='add')
# dst = dst / dst_cnt
# dst2 = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode, include_self=True)
# assert torch.allclose(dst1, dst2)
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor, b_select = None, unm_modi = None, **kwarg) -> torch.Tensor:
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
b, _, c = unm.shape
if b_select is not None:
if not isinstance(b_select, list):
b_select = [b_select]
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
else:
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
if unm_modi is not None:
if unm_modi == "zero":
unm = torch.zeros_like(unm)
src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))
# Combine back to the original shape
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=u_idx).expand(-1, -1, c), src=unm)
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=s_idx).expand(-1, -1, c), src=src)
return out
ret_dict = {"unm_num": unm_idx.shape[1]}
return merge, unmerge, ret_dict
# For Global Token Merging.
def bipartite_soft_matching_2s( metric: torch.Tensor,
src_len: int, ratio: float, align_batch: bool,
merge_mode: str = "replace", unmerge_chunk: int = 0) -> Tuple[Callable, Callable, dict]:
"""
Partitions the tokens into src and dst and merges ratio of src tokens from src to dst.
Src tokens are partitioned as first src_len tokens. Others are dst tokens.
Args:
- metric [B, N, C]: metric to use for similarity.
- src_len: src token length. [ src | dst ]: [ src_len | N - src_len ]
- ratio: ratio of src tokens to be removed (by merging).
- unm_pre: number of src tokens not merged at previous ToMe. Pre-sequence: [unm_pre|F_0|F_1|...]
- align_batch: whether to align similarity matching maps of samples in the batch. True when using PnP.
- merge_mode: how to merge tokens. "mean": tokens -> Mean(src_token, dst_token); "replace": tokens -> dst_token.
- unmerge_chunk: return which partition in unmerge. 0 for src and 1 for dst.
Returns:
Merge and unmerge operation according to the matching result. Return a dict including other values.
"""
B, N, _ = metric.shape
if ratio <= 0:
return do_nothing, do_nothing
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
idx_buffer = torch.arange(N, device=metric.device, dtype=torch.int64)
# [ src | dst ]: [ src_len | N - src_len ]
a_idx = idx_buffer[None, :src_len, None]
b_idx = idx_buffer[None, src_len:, None]
del idx_buffer
num_dst = b_idx.shape[1]
# import ipdb; ipdb.set_trace()
def split(x):
# Split src, dst tokens
b, n, c = x.shape
# print(f"[INFO] {num_dst} {x.shape} ")
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
# Cosine similarity between src and dst tokens
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], int(a.shape[1] * ratio))
if align_batch:
# Cat scores of all samples in the batch. When using PnP, samples are (src, neg, pos).
# Find the most similar greedily among all samples.
scores = torch.cat([*scores], dim=-1)
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None],
dim=-2, index=src_idx) % num_dst # Map index to (0, num_dst - 1)
# Use the same matching result for all samples
unm_idx = unm_idx.expand(B, -1, -1)
src_idx = src_idx.expand(B, -1, -1)
dst_idx = dst_idx.expand(B, -1, -1)
else:
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
def merge(x: torch.Tensor, mode=None) -> torch.Tensor:
# Merge tokens according to matching result.
# import ipdb; ipdb.set_trace()
src, dst = split(x)
n, t1, c = src.shape
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
mode = mode if mode is not None else merge_mode
if mode != "replace":
src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
# In other mode such as mean, combine matched src and dst tokens.
dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c),
src, reduce=mode, include_self=True)
# In replace mode, just cat unmerged tokens and dst tokens. Discard src tokens.
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor, **kwarg) -> torch.Tensor:
# Unmerge tokens to original size according to matching result.
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
b, _, c = unm.shape
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
# Restored src tokens take value from dst tokens
src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))
# Combine back to the original shape
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
# Scatter dst tokens
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
# Scatter unmerged tokens
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
dim=1, index=u_idx).expand(-1, -1, c), src=unm)
# Scatter src tokens
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
dim=1, index=s_idx).expand(-1, -1, c), src=src)
out = out[:, :src_len, :] if unmerge_chunk == 0 else out[:, src_len:, :]
return out
ret_dict = {"unm_num": unm_idx.shape[1]}
return merge, unmerge, ret_dict
# Original ToMe
def bipartite_soft_matching_random2d(metric: torch.Tensor,
w: int, h: int, sx: int, sy: int, r: int,
no_rand: bool = False,
generator: torch.Generator = None) -> Tuple[Callable, Callable]:
"""
Partitions the tokens into src and dst and merges r tokens from src to dst.
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
Args:
- metric [B, N, C]: metric to use for similarity
- w: image width in tokens
- h: image height in tokens
- sx: stride in the x dimension for dst, must divide w
- sy: stride in the y dimension for dst, must divide h
- r: number of tokens to remove (by merging)
- no_rand: if true, disable randomness (use top left corner only)
- rand_seed: if no_rand is false, and if not None, sets random seed.
"""
B, N, _ = metric.shape
if r <= 0:
return do_nothing, do_nothing
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
hsy, wsx = h // sy, w // sx
# For each sy by sx kernel, randomly assign one token to be dst and the rest src
if no_rand:
rand_idx = torch.zeros(
hsy, wsx, 1, device=metric.device, dtype=torch.int64)
else:
rand_idx = torch.randint(
sy*sx, size=(hsy, wsx, 1), device=generator.device, generator=generator).to(metric.device)
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
idx_buffer_view = torch.zeros(
hsy, wsx, sy*sx, device=metric.device, dtype=torch.int64)
idx_buffer_view.scatter_(
dim=2, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=rand_idx.dtype))
idx_buffer_view = idx_buffer_view.view(
hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx)
# Image is not divisible by sx or sy so we need to move it into a new buffer
if (hsy * sy) < h or (wsx * sx) < w:
idx_buffer = torch.zeros(
h, w, device=metric.device, dtype=torch.int64)
idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view
else:
idx_buffer = idx_buffer_view
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1)
# We're finished with these
del idx_buffer, idx_buffer_view
# rand_idx is currently dst|src, so split them
num_dst = hsy * wsx
a_idx = rand_idx[:, num_dst:, :] # src
b_idx = rand_idx[:, :num_dst, :] # dst
def split(x):
C = x.shape[-1]
src = gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C))
dst = gather(x, dim=1, index=b_idx.expand(B, num_dst, C))
return src, dst
# Cosine similarity between A and B
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], r)
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
src, dst = split(x)
n, t1, c = src.shape
unm = gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c))
src = gather(src, dim=-2, index=src_idx.expand(n, r, c))
dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode)
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor) -> torch.Tensor:
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
_, _, c = unm.shape
src = gather(dst, dim=-2, index=dst_idx.expand(B, r, c))
# Combine back to the original shape
out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype)
out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst)
out.scatter_(dim=-2, index=gather(a_idx.expand(B,
a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c), src=unm)
out.scatter_(dim=-2, index=gather(a_idx.expand(B,
a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c), src=src)
return out
return merge, unmerge
def bipartite_soft_matching_2f(metric: torch.Tensor, src_len: int, ratio: float, adhere_src: bool, merge_mode: str = "replace", scores = None, coord = None, rec_field = 2, unmerge_chunk = 0) -> Tuple[Callable, Callable]:
"""
Partitions the tokens into src and dst and merges r tokens from src to dst.
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
Args:
- metric [B, N, C]: metric to use for similarity
- w: image width in tokens
- h: image height in tokens
- sx: stride in the x dimension for dst, must divide w
- sy: stride in the y dimension for dst, must divide h
- r: number of tokens to remove (by merging)
- no_rand: if true, disable randomness (use top left corner only)
- rand_seed: if no_rand is false, and if not None, sets random seed.
"""
B, N, _ = metric.shape
if ratio <= 0:
return do_nothing, do_nothing
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
idx_buffer = torch.arange(N, device=metric.device, dtype=torch.int64)
# randn = torch.randint(0, F, torch.Size([nf])).to(idx_buffer) * nf
# dst_indexes = torch.arange(nf, device=metric.device, dtype=torch.int64) + randn
# dst_select = torch.zeros_like(idx_buffer).to(torch.bool)
# dst_select[dst_indexes] = 1
# randn = 0
# dst_select = ((idx_buffer // nf) == 0).to(torch.bool)
a_idx = idx_buffer[None, :src_len, None]
b_idx = idx_buffer[None, src_len:, None]
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
# We're finished with these
del idx_buffer
num_dst = b_idx.shape[1]
def split(x):
b, n, c = x.shape
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
def split_coord(coord):
b, n, c = coord.shape
src = gather(coord, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(coord, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
# Cosine similarity between A and B
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
if coord is not None:
src_coord, dst_coord = split_coord(coord)
mask = torch.norm(src_coord[:,:,None,:] - dst_coord[:,None,:,:], dim=-1) > rec_field
scores = a @ b.transpose(-1, -2)
if coord is not None:
scores[mask] = 0
# Can't reduce more than the # tokens in src
r = int(a.shape[1] * ratio)
r = min(a.shape[1], r)
if adhere_src:
scores = torch.cat([*scores], dim = -1)
# scores = torch.sum(scores, dim=0)
node_max, node_idx = scores.max(dim=-1)
# nscores = torch.cat([*scores], dim = -2)
# rev_node_max, rev_node_idx = nscores.max(dim = -2)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
unm_idx = unm_idx.expand(B, -1, -1)
src_idx = src_idx.expand(B, -1, -1)
dst_idx = dst_idx.expand(B, -1, -1)
else:
# scores = torch.cat([*scores][1:], dim = -1)
# node_max, node_idx = scores.max(dim=-1)
# edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
# unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
# src_idx = edge_idx[..., :r, :] # Merged Tokens
# dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
# unm_idx = unm_idx.expand(B, -1, -1)
# src_idx = src_idx.expand(B, -1, -1)
# dst_idx = dst_idx.expand(B, -1, -1)
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
# if adhere_src:
# unm_idx[:,...] = unm_idx[0:1]
# src_idx[:,...] = src_idx[0:1]
# dst_idx[:,...] = dst_idx[0:1]
def merge(x: torch.Tensor, mode=None, b_select = None) -> torch.Tensor:
src, dst = split(x)
n, t1, c = src.shape
if b_select is not None:
if not isinstance(b_select, list):
b_select = [b_select]
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
else:
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
# src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
mode = mode if mode is not None else merge_mode
if mode != "replace":
dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c), src, reduce=mode, include_self=True)
# dst = dst.scatter(-2, dst_idx.expand(n, r, c), src, reduce='add')
# dst_cnt = torch.ones_like(dst)
# src_ones = torch.ones_like(src)
# dst_cnt = dst_cnt.scatter(-2, dst_idx.expand(n, r, c), src_ones, reduce='add')
# dst = dst / dst_cnt
# dst2 = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode, include_self=True)
# assert torch.allclose(dst1, dst2)
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor, b_select = None, unm_modi = None) -> torch.Tensor:
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
b, _, c = unm.shape
if b_select is not None:
if not isinstance(b_select, list):
b_select = [b_select]
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
else:
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
if unm_modi is not None:
if unm_modi == "zero":
unm = torch.zeros_like(unm)
src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))
# Combine back to the original shape
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=u_idx).expand(-1, -1, c), src=unm)
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=s_idx).expand(-1, -1, c), src=src)
if unmerge_chunk == 0:
out = out[:,:src_len,:]
else:
out = out[:,src_len:,:]
return out
ret_dict = {"unm_num": unm_idx.shape[1]}
return merge, unmerge, ret_dict |