Spaces:
Build error
Build error
File size: 11,843 Bytes
1de8821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
# Data loading based on https://github.com/NVIDIA/flownet2-pytorch
import numpy as np
import torch
import torch.utils.data as data
import os
import random
from glob import glob
import os.path as osp
from utils import frame_utils
from data.transforms import FlowAugmentor, SparseFlowAugmentor
class FlowDataset(data.Dataset):
def __init__(self, aug_params=None, sparse=False,
load_occlusion=False,
):
self.augmentor = None
self.sparse = sparse
if aug_params is not None:
if sparse:
self.augmentor = SparseFlowAugmentor(**aug_params)
else:
self.augmentor = FlowAugmentor(**aug_params)
self.is_test = False
self.init_seed = False
self.flow_list = []
self.image_list = []
self.extra_info = []
self.load_occlusion = load_occlusion
self.occ_list = []
def __getitem__(self, index):
if self.is_test:
img1 = frame_utils.read_gen(self.image_list[index][0])
img2 = frame_utils.read_gen(self.image_list[index][1])
img1 = np.array(img1).astype(np.uint8)[..., :3]
img2 = np.array(img2).astype(np.uint8)[..., :3]
img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
return img1, img2, self.extra_info[index]
if not self.init_seed:
worker_info = torch.utils.data.get_worker_info()
if worker_info is not None:
torch.manual_seed(worker_info.id)
np.random.seed(worker_info.id)
random.seed(worker_info.id)
self.init_seed = True
index = index % len(self.image_list)
valid = None
if self.sparse:
flow, valid = frame_utils.readFlowKITTI(self.flow_list[index]) # [H, W, 2], [H, W]
else:
flow = frame_utils.read_gen(self.flow_list[index])
if self.load_occlusion:
occlusion = frame_utils.read_gen(self.occ_list[index]) # [H, W], 0 or 255 (occluded)
img1 = frame_utils.read_gen(self.image_list[index][0])
img2 = frame_utils.read_gen(self.image_list[index][1])
flow = np.array(flow).astype(np.float32)
img1 = np.array(img1).astype(np.uint8)
img2 = np.array(img2).astype(np.uint8)
if self.load_occlusion:
occlusion = np.array(occlusion).astype(np.float32)
# grayscale images
if len(img1.shape) == 2:
img1 = np.tile(img1[..., None], (1, 1, 3))
img2 = np.tile(img2[..., None], (1, 1, 3))
else:
img1 = img1[..., :3]
img2 = img2[..., :3]
if self.augmentor is not None:
if self.sparse:
img1, img2, flow, valid = self.augmentor(img1, img2, flow, valid)
else:
if self.load_occlusion:
img1, img2, flow, occlusion = self.augmentor(img1, img2, flow, occlusion=occlusion)
else:
img1, img2, flow = self.augmentor(img1, img2, flow)
img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
flow = torch.from_numpy(flow).permute(2, 0, 1).float()
if self.load_occlusion:
occlusion = torch.from_numpy(occlusion) # [H, W]
if valid is not None:
valid = torch.from_numpy(valid)
else:
valid = (flow[0].abs() < 1000) & (flow[1].abs() < 1000)
# mask out occluded pixels
if self.load_occlusion:
# non-occlusion: 0, occlusion: 255
noc_valid = 1 - occlusion / 255. # 0 or 1
return img1, img2, flow, valid.float(), noc_valid.float()
return img1, img2, flow, valid.float()
def __rmul__(self, v):
self.flow_list = v * self.flow_list
self.image_list = v * self.image_list
return self
def __len__(self):
return len(self.image_list)
class MpiSintel(FlowDataset):
def __init__(self, aug_params=None, split='training',
root='datasets/Sintel',
dstype='clean',
load_occlusion=False,
):
super(MpiSintel, self).__init__(aug_params,
load_occlusion=load_occlusion,
)
flow_root = osp.join(root, split, 'flow')
image_root = osp.join(root, split, dstype)
if load_occlusion:
occlusion_root = osp.join(root, split, 'occlusions')
if split == 'test':
self.is_test = True
for scene in os.listdir(image_root):
image_list = sorted(glob(osp.join(image_root, scene, '*.png')))
for i in range(len(image_list) - 1):
self.image_list += [[image_list[i], image_list[i + 1]]]
self.extra_info += [(scene, i)] # scene and frame_id
if split != 'test':
self.flow_list += sorted(glob(osp.join(flow_root, scene, '*.flo')))
if load_occlusion:
self.occ_list += sorted(glob(osp.join(occlusion_root, scene, '*.png')))
class FlyingChairs(FlowDataset):
def __init__(self, aug_params=None, split='train',
root='datasets/FlyingChairs_release/data',
):
super(FlyingChairs, self).__init__(aug_params)
images = sorted(glob(osp.join(root, '*.ppm')))
flows = sorted(glob(osp.join(root, '*.flo')))
assert (len(images) // 2 == len(flows))
split_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'chairs_split.txt')
split_list = np.loadtxt(split_file, dtype=np.int32)
for i in range(len(flows)):
xid = split_list[i]
if (split == 'training' and xid == 1) or (split == 'validation' and xid == 2):
self.flow_list += [flows[i]]
self.image_list += [[images[2 * i], images[2 * i + 1]]]
class FlyingThings3D(FlowDataset):
def __init__(self, aug_params=None,
root='datasets/FlyingThings3D',
dstype='frames_cleanpass',
test_set=False,
validate_subset=True,
):
super(FlyingThings3D, self).__init__(aug_params)
img_dir = root
flow_dir = root
for cam in ['left']:
for direction in ['into_future', 'into_past']:
if test_set:
image_dirs = sorted(glob(osp.join(img_dir, dstype, 'TEST/*/*')))
else:
image_dirs = sorted(glob(osp.join(img_dir, dstype, 'TRAIN/*/*')))
image_dirs = sorted([osp.join(f, cam) for f in image_dirs])
if test_set:
flow_dirs = sorted(glob(osp.join(flow_dir, 'optical_flow/TEST/*/*')))
else:
flow_dirs = sorted(glob(osp.join(flow_dir, 'optical_flow/TRAIN/*/*')))
flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs])
for idir, fdir in zip(image_dirs, flow_dirs):
images = sorted(glob(osp.join(idir, '*.png')))
flows = sorted(glob(osp.join(fdir, '*.pfm')))
for i in range(len(flows) - 1):
if direction == 'into_future':
self.image_list += [[images[i], images[i + 1]]]
self.flow_list += [flows[i]]
elif direction == 'into_past':
self.image_list += [[images[i + 1], images[i]]]
self.flow_list += [flows[i + 1]]
# validate on 1024 subset of test set for fast speed
if test_set and validate_subset:
num_val_samples = 1024
all_test_samples = len(self.image_list) # 7866
stride = all_test_samples // num_val_samples
remove = all_test_samples % num_val_samples
# uniformly sample a subset
self.image_list = self.image_list[:-remove][::stride]
self.flow_list = self.flow_list[:-remove][::stride]
class KITTI(FlowDataset):
def __init__(self, aug_params=None, split='training',
root='datasets/KITTI',
):
super(KITTI, self).__init__(aug_params, sparse=True,
)
if split == 'testing':
self.is_test = True
root = osp.join(root, split)
images1 = sorted(glob(osp.join(root, 'image_2/*_10.png')))
images2 = sorted(glob(osp.join(root, 'image_2/*_11.png')))
for img1, img2 in zip(images1, images2):
frame_id = img1.split('/')[-1]
self.extra_info += [[frame_id]]
self.image_list += [[img1, img2]]
if split == 'training':
self.flow_list = sorted(glob(osp.join(root, 'flow_occ/*_10.png')))
class HD1K(FlowDataset):
def __init__(self, aug_params=None, root='datasets/HD1K'):
super(HD1K, self).__init__(aug_params, sparse=True)
seq_ix = 0
while 1:
flows = sorted(glob(os.path.join(root, 'hd1k_flow_gt', 'flow_occ/%06d_*.png' % seq_ix)))
images = sorted(glob(os.path.join(root, 'hd1k_input', 'image_2/%06d_*.png' % seq_ix)))
if len(flows) == 0:
break
for i in range(len(flows) - 1):
self.flow_list += [flows[i]]
self.image_list += [[images[i], images[i + 1]]]
seq_ix += 1
def build_train_dataset(args):
""" Create the data loader for the corresponding training set """
if args.stage == 'chairs':
aug_params = {'crop_size': args.image_size, 'min_scale': -0.1, 'max_scale': 1.0, 'do_flip': True}
train_dataset = FlyingChairs(aug_params, split='training')
elif args.stage == 'things':
aug_params = {'crop_size': args.image_size, 'min_scale': -0.4, 'max_scale': 0.8, 'do_flip': True}
clean_dataset = FlyingThings3D(aug_params, dstype='frames_cleanpass')
final_dataset = FlyingThings3D(aug_params, dstype='frames_finalpass')
train_dataset = clean_dataset + final_dataset
elif args.stage == 'sintel':
# 1041 pairs for clean and final each
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True}
things = FlyingThings3D(aug_params, dstype='frames_cleanpass') # 40302
sintel_clean = MpiSintel(aug_params, split='training', dstype='clean')
sintel_final = MpiSintel(aug_params, split='training', dstype='final')
aug_params = {'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True}
kitti = KITTI(aug_params=aug_params) # 200
aug_params = {'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.2, 'do_flip': True}
hd1k = HD1K(aug_params=aug_params) # 1047
train_dataset = 100 * sintel_clean + 100 * sintel_final + 200 * kitti + 5 * hd1k + things
elif args.stage == 'kitti':
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False}
train_dataset = KITTI(aug_params, split='training',
)
else:
raise ValueError(f'stage {args.stage} is not supported')
return train_dataset
|