Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,630 Bytes
f9cbc98 6fa3bd9 f9cbc98 41906bb f9cbc98 79910d2 f9cbc98 eb5b3bb f9cbc98 79910d2 f9cbc98 79910d2 f9cbc98 79910d2 f9cbc98 79910d2 f9cbc98 eb5b3bb f9cbc98 6fa3bd9 f9cbc98 6fa3bd9 f9cbc98 79910d2 f9cbc98 7c18bc2 f9cbc98 7c18bc2 f9cbc98 6fa3bd9 f9cbc98 6fa3bd9 f9cbc98 79910d2 f9cbc98 7c18bc2 f9cbc98 7c18bc2 f9cbc98 7c18bc2 f9cbc98 7c18bc2 f9cbc98 7c18bc2 f9cbc98 6fa3bd9 f9cbc98 7c18bc2 f9cbc98 7c18bc2 f9cbc98 ee2b9f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import gradio as gr
import spaces
import numpy as np
import torch
torch.jit.script = lambda f: f
import cv2
import os
import imageio
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from controlnet_aux import LineartDetector
from functools import partial
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, ToTensor, Normalize, Resize
from NaRCan_model import Homography, Siren
from util import get_mgrid, apply_homography, jacobian, VideoFitting, TestVideoFitting
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def get_example():
case = [
[
'examples/bear.mp4',
],
[
'examples/boat.mp4',
],
[
'examples/woman-drink.mp4',
],
[
'examples/corgi.mp4',
],
[
'examples/yacht.mp4',
],
[
'examples/koolshooters.mp4',
],
[
'examples/overlook-the-ocean.mp4',
],
[
'examples/rotate.mp4',
],
[
'examples/shark-ocean.mp4',
],
[
'examples/surf.mp4',
],
[
'examples/cactus.mp4',
],
[
'examples/gold-fish.mp4',
]
]
return case
def set_default_prompt(video_name):
video_to_prompt = {
'bear.mp4': 'bear, Van Gogh Style',
'boat.mp4': 'a burning boat sails on lava',
'cactus.mp4': 'cactus, made of paper',
'corgi.mp4': 'a hellhound',
'gold-fish.mp4': 'Goldfish in the Milky Way',
'koolshooters.mp4': 'Avatar',
'overlook-the-ocean.mp4': 'ocean, pixel style',
'rotate.mp4': 'turbine engine',
'shark-ocean.mp4': 'A sleek shark, cartoon style',
'surf.mp4': 'Sailing, The background is a large white cloud, sketch style',
'woman-drink.mp4': 'a drinking zombie',
'yacht.mp4': 'yacht, cyberpunk style',
}
return video_to_prompt.get(video_name, '')
def update_prompt(input_video):
video_name = input_video.split('/')[-1]
return set_default_prompt(video_name)
# Map videos to corresponding images
video_to_image = {
'bear.mp4': ['canonical/bear.png', 'pth_file/bear', 'examples_frames/bear'],
'boat.mp4': ['canonical/boat.png', 'pth_file/boat', 'examples_frames/boat'],
'cactus.mp4': ['canonical/cactus.png', 'pth_file/cactus', 'examples_frames/cactus'],
'corgi.mp4': ['canonical/corgi.png', 'pth_file/corgi', 'examples_frames/corgi'],
'gold-fish.mp4': ['canonical/gold-fish.png', 'pth_file/gold-fish', 'examples_frames/gold-fish'],
'koolshooters.mp4': ['canonical/koolshooters.png', 'pth_file/koolshooters', 'examples_frames/koolshooters'],
'overlook-the-ocean.mp4': ['canonical/overlook-the-ocean.png', 'pth_file/overlook-the-ocean', 'examples_frames/overlook-the-ocean'],
'rotate.mp4': ['canonical/rotate.png', 'pth_file/rotate', 'examples_frames/rotate'],
'shark-ocean.mp4': ['canonical/shark-ocean.png', 'pth_file/shark-ocean', 'examples_frames/shark-ocean'],
'surf.mp4': ['canonical/surf.png', 'pth_file/surf', 'examples_frames/surf'],
'woman-drink.mp4': ['canonical/woman-drink.png', 'pth_file/woman-drink', 'examples_frames/woman-drink'],
'yacht.mp4': ['canonical/yacht.png', 'pth_file/yacht', 'examples_frames/yacht'],
}
def images_to_video(image_list, output_path, fps=10):
# Convert PIL Images to numpy arrays
frames = [np.array(img).astype(np.uint8) for img in image_list]
frames = frames[:20]
# Create video writer
writer = imageio.get_writer(output_path, fps=fps, codec='libx264')
for frame in frames:
writer.append_data(frame)
writer.close()
@spaces.GPU(duration=120)
def NaRCan_make_video(edit_canonical, pth_path, frames_path):
# load NaRCan model
checkpoint_g_old = torch.load(os.path.join(pth_path, "homography_g.pth"))
checkpoint_g = torch.load(os.path.join(pth_path, "mlp_g.pth"))
g_old = Homography(hidden_features=256, hidden_layers=2).to(device)
g = Siren(in_features=3, out_features=2, hidden_features=256,
hidden_layers=5, outermost_linear=True).to(device)
g_old.load_state_dict(checkpoint_g_old)
g.load_state_dict(checkpoint_g)
g_old.eval()
g.eval()
transform = Compose([
Resize(512),
ToTensor(),
Normalize(torch.Tensor([0.5, 0.5, 0.5]), torch.Tensor([0.5, 0.5, 0.5]))
])
v = TestVideoFitting(frames_path, transform)
videoloader = DataLoader(v, batch_size=1, pin_memory=True, num_workers=0)
model_input, ground_truth = next(iter(videoloader))
model_input, ground_truth = model_input[0].to(device), ground_truth[0].to(device)
myoutput = None
data_len = len(os.listdir(frames_path))
with torch.no_grad():
batch_size = (v.H * v.W)
for step in range(data_len):
start = (step * batch_size) % len(model_input)
end = min(start + batch_size, len(model_input))
# get the deformation
xy, t = model_input[start:end, :-1], model_input[start:end, [-1]]
xyt = model_input[start:end]
h_old = apply_homography(xy, g_old(t))
h = g(xyt)
xy_ = h_old + h
# use canonical to reconstruct
w, h = v.W, v.H
canonical_img = np.array(edit_canonical.convert('RGB'))
canonical_img = torch.from_numpy(canonical_img).float().to(device)
h_c, w_c = canonical_img.shape[:2]
grid_new = xy_.clone()
grid_new[..., 1] = xy_[..., 0] / 1.5
grid_new[..., 0] = xy_[..., 1] / 2.0
if len(canonical_img.shape) == 3:
canonical_img = canonical_img.unsqueeze(0)
results = torch.nn.functional.grid_sample(
canonical_img.permute(0, 3, 1, 2),
grid_new.unsqueeze(1).unsqueeze(0),
mode='bilinear',
padding_mode='border')
o = results.squeeze().permute(1,0)
if step == 0:
myoutput = o
else:
myoutput = torch.cat([myoutput, o])
myoutput = myoutput.reshape(512, 512, data_len, 3).permute(2, 0, 1, 3).clone().detach().cpu().numpy().astype(np.float32)
# myoutput = np.clip(myoutput, -1, 1) * 0.5 + 0.5
for i in range(len(myoutput)):
myoutput[i] = Image.fromarray(np.uint8(myoutput[i])).resize((512, 512)) #854, 480
edit_video_path = f'NaRCan_fps_10.mp4'
images_to_video(myoutput, edit_video_path)
return edit_video_path
@spaces.GPU(duration=120)
def edit_with_pnp(input_video, prompt, num_steps, guidance_scale, seed, n_prompt, control_type="Lineart"):
video_name = input_video.split('/')[-1]
if video_name in video_to_image:
image_path = video_to_image[video_name][0]
pth_path = video_to_image[video_name][1]
frames_path = video_to_image[video_name][2]
else:
return None
if control_type == "Lineart":
# Load the control net model for lineart
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_lineart", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.to(device)
# lineart
processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
processor_partial = partial(processor, coarse=False)
size_ = 768
canonical_image = Image.open(image_path)
ori_size = canonical_image.size
image = processor_partial(canonical_image.resize((size_, size_)), detect_resolution=size_, image_resolution=size_)
image = image.resize(ori_size, resample=Image.BILINEAR)
image.save("control_map.png")
generator = torch.manual_seed(seed) if seed != -1 else None
output_images = pipe(
prompt=prompt,
image=image,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
negative_prompt=n_prompt,
generator=generator
).images
output_images[0].save("edited_canonical_image.png")
# output_images[0] = output_images[0].resize(ori_size, resample=Image.BILINEAR)
else:
# Load the control net model for canny
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.to(device)
# canny
canonical_image = cv2.imread(image_path)
canonical_image = cv2.cvtColor(canonical_image, cv2.COLOR_BGR2RGB)
image = cv2.cvtColor(canonical_image, cv2.COLOR_RGB2GRAY)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
image.save("control_map.png")
generator = torch.manual_seed(seed) if seed != -1 else None
output_images = pipe(
prompt=prompt,
image=image,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
negative_prompt=n_prompt,
generator=generator
).images
output_images[0].save("edited_canonical_image.png")
edit_video_path = NaRCan_make_video(output_images[0], pth_path, frames_path)
edit_image_path = [
(image_path, "canonical image"),
("control_map.png", "control map"),
("edited_canonical_image.png", "edited canonical image")
]
# Here we return the first output image as the result
return edit_video_path, edit_image_path
########
# demo #
########
intro = """
<div style="text-align:center">
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
NaRCan - <small>Natural Refined Canonical Image</small>
</h1>
<span>[<a target="_blank" href="https://koi953215.github.io/NaRCan_page/">Project page</a>], [<a target="_blank" href="https://huggingface.co/papers/2406.06523">Paper</a>]</span>
<div style="display:flex; justify-content: center;margin-top: 0.5em">Try selecting different control types (Canny or Lineart) in Advanced options!</div>
</div>
"""
with gr.Blocks(css="style.css") as demo:
gr.HTML(intro)
frames = gr.State()
inverted_latents = gr.State()
latents = gr.State()
zs = gr.State()
do_inversion = gr.State(value=True)
with gr.Row():
input_video = gr.Video(label="Input Video", interactive=False, elem_id="input_video", value='examples/bear.mp4', height=365, width=365)
output_video = gr.Video(label="Edited Video", interactive=False, elem_id="output_video", height=365, width=365)
# input_video.style(height=365, width=365)
# output_video.style(height=365, width=365)
with gr.Row():
prompt = gr.Textbox(
label="Describe your edited video",
max_lines=1,
value="bear, Van Gogh Style"
# placeholder="bear, Van Gogh Style"
)
with gr.Row():
canonical_result = gr.Gallery(label="Edited Canonical Image", columns=3)
with gr.Row():
run_button = gr.Button("Edit your video!", visible=True)
max_images = 12
default_num_images = 3
with gr.Accordion('Advanced options', open=False):
control_type = gr.Dropdown(
["Canny", "Lineart"],
label="Control Type",
info="Canny or Lineart",
value="Lineart"
)
num_steps = gr.Slider(label='Steps',
minimum=1,
maximum=100,
value=20,
step=1)
guidance_scale = gr.Slider(label='Guidance Scale',
minimum=0.1,
maximum=30.0,
value=9.0,
step=0.1)
seed = gr.Slider(label='Seed',
minimum=-1,
maximum=2147483647,
step=1,
randomize=True)
n_prompt = gr.Textbox(
label='Negative Prompt',
value=""
)
input_video.change(
fn = update_prompt,
inputs = [input_video],
outputs = [prompt],
queue = False)
run_button.click(fn = edit_with_pnp,
inputs = [input_video,
prompt,
num_steps,
guidance_scale,
seed,
n_prompt,
control_type,
],
outputs = [output_video, canonical_result]
)
gr.Examples(
examples=get_example(),
label='Examples',
inputs=[input_video],
outputs=[output_video],
examples_per_page=8
)
demo.queue()
demo.launch() |