Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install -q transformers datasets streamlit
|
2 |
+
|
3 |
+
from transformers import AutoModelForSequenceClassification
|
4 |
+
from transformers import TFAutoModelForSequenceClassification
|
5 |
+
from transformers import AutoTokenizer, AutoConfig
|
6 |
+
import numpy as np
|
7 |
+
from scipy.special import softmax
|
8 |
+
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
|
11 |
+
|
12 |
+
model_path = f"avichr/heBERT_sentiment_analysis"
|
13 |
+
config = AutoConfig.from_pretrained(model_path)
|
14 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
15 |
+
|
16 |
+
# Preprocess text (username and link placeholders)
|
17 |
+
def preprocess(text):
|
18 |
+
new_text = []
|
19 |
+
for t in text.split(" "):
|
20 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
21 |
+
t = 'http' if t.startswith('http') else t
|
22 |
+
new_text.append(t)
|
23 |
+
return " ".join(new_text)
|
24 |
+
|
25 |
+
# Input preprocessing
|
26 |
+
text = "Covid cases are increasing fast!"
|
27 |
+
text = preprocess(text)
|
28 |
+
|
29 |
+
# PyTorch-based models
|
30 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
31 |
+
output = model(**encoded_input)
|
32 |
+
scores = output[0][0].detach().numpy()
|
33 |
+
scores = softmax(scores)
|
34 |
+
|
35 |
+
# TensorFlow-based models
|
36 |
+
# model = TFAutoModelForSequenceClassification.from_pretrained(model_path)
|
37 |
+
# model.save_pretrained(model_path)
|
38 |
+
# text = "Covid cases are increasing fast!"
|
39 |
+
# encoded_input = tokenizer(text, return_tensors='tf')
|
40 |
+
# output = model(encoded_input)
|
41 |
+
# scores = output[0][0].numpy()
|
42 |
+
# scores = softmax(scores)
|
43 |
+
|
44 |
+
config.id2label = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'}
|
45 |
+
|
46 |
+
# Print labels and scores
|
47 |
+
ranking = np.argsort(scores)
|
48 |
+
ranking = ranking[::-1]
|
49 |
+
print(f"Classified text: {text}")
|
50 |
+
for i in range(scores.shape[0]):
|
51 |
+
l = config.id2label[ranking[i]]
|
52 |
+
s = scores[ranking[i]]
|
53 |
+
print(f"{i+1}) {l} {np.round(float(s), 4)}")
|
54 |
+
|
55 |
+
from transformers import AutoModelForSequenceClassification
|
56 |
+
from transformers import TFAutoModelForSequenceClassification
|
57 |
+
from transformers import AutoTokenizer, AutoConfig
|
58 |
+
from scipy.special import softmax
|
59 |
+
import streamlit as st
|
60 |
+
|
61 |
+
|
62 |
+
def preprocess(text):
|
63 |
+
new_text = []
|
64 |
+
for t in text.split(" "):
|
65 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
66 |
+
t = 'http' if t.startswith('http') else t
|
67 |
+
new_text.append(t)
|
68 |
+
return " ".join(new_text)
|
69 |
+
|
70 |
+
|
71 |
+
def sentiment_analysis(text):
|
72 |
+
text = preprocess(text)
|
73 |
+
|
74 |
+
# Load the model
|
75 |
+
model_path = f"avichr/heBERT_sentiment_analysis"
|
76 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
|
77 |
+
config = AutoConfig.from_pretrained(model_path)
|
78 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
79 |
+
|
80 |
+
# Encode text input
|
81 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
82 |
+
output = model(**encoded_input)
|
83 |
+
scores_ = output[0][0].detach().numpy()
|
84 |
+
|
85 |
+
# Calculate softmax probabilities
|
86 |
+
scores_ = softmax(scores_)
|
87 |
+
|
88 |
+
# Format output dict of scores
|
89 |
+
labels = ['Negative', 'Neutral', 'Positive']
|
90 |
+
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
|
91 |
+
|
92 |
+
return scores
|
93 |
+
|
94 |
+
|
95 |
+
import streamlit as st
|
96 |
+
|
97 |
+
st.title("Sentiment Analysis for Covid Feelings")
|
98 |
+
|
99 |
+
# User input field
|
100 |
+
text = st.text_input(label="Enter your text:")
|
101 |
+
|
102 |
+
# Perform sentiment analysis
|
103 |
+
if text:
|
104 |
+
scores = sentiment_analysis(text)
|
105 |
+
|
106 |
+
# Display sentiment scores
|
107 |
+
st.subheader("Sentiment Scores")
|
108 |
+
for label in scores:
|
109 |
+
score = scores[label]
|
110 |
+
st.write(f"{label}: {score:.2f}")
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
st.run(.py)
|