Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Requirements
|
2 |
model_path = f"avichr/heBERT_sentiment_analysis"
|
3 |
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
|
@@ -35,4 +97,5 @@ demo = gr.Interface(
|
|
35 |
outputs="label",
|
36 |
examples=[["This is something!"]])
|
37 |
|
38 |
-
demo.launch()
|
|
|
|
1 |
+
!pip install -q transformers datasets gradio
|
2 |
+
|
3 |
+
from transformers import AutoModelForSequenceClassification
|
4 |
+
from transformers import TFAutoModelForSequenceClassification
|
5 |
+
from transformers import AutoTokenizer, AutoConfig
|
6 |
+
import numpy as np
|
7 |
+
from scipy.special import softmax
|
8 |
+
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
|
11 |
+
|
12 |
+
model_path = f"avichr/heBERT_sentiment_analysis"
|
13 |
+
config = AutoConfig.from_pretrained(model_path)
|
14 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
15 |
+
|
16 |
+
# Preprocess text (username and link placeholders)
|
17 |
+
def preprocess(text):
|
18 |
+
new_text = []
|
19 |
+
for t in text.split(" "):
|
20 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
21 |
+
t = 'http' if t.startswith('http') else t
|
22 |
+
new_text.append(t)
|
23 |
+
return " ".join(new_text)
|
24 |
+
|
25 |
+
# Input preprocessing
|
26 |
+
text = "Covid cases are increasing fast!"
|
27 |
+
text = preprocess(text)
|
28 |
+
|
29 |
+
# PyTorch-based models
|
30 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
31 |
+
output = model(**encoded_input)
|
32 |
+
scores = output[0][0].detach().numpy()
|
33 |
+
scores = softmax(scores)
|
34 |
+
|
35 |
+
# TensorFlow-based models
|
36 |
+
# model = TFAutoModelForSequenceClassification.from_pretrained(model_path)
|
37 |
+
# model.save_pretrained(model_path)
|
38 |
+
# text = "Covid cases are increasing fast!"
|
39 |
+
# encoded_input = tokenizer(text, return_tensors='tf')
|
40 |
+
# output = model(encoded_input)
|
41 |
+
# scores = output[0][0].numpy()
|
42 |
+
# scores = softmax(scores)
|
43 |
+
|
44 |
+
config.id2label = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'}
|
45 |
+
|
46 |
+
# Print labels and scores
|
47 |
+
ranking = np.argsort(scores)
|
48 |
+
ranking = ranking[::-1]
|
49 |
+
print(f"Classified text: {text}")
|
50 |
+
for i in range(scores.shape[0]):
|
51 |
+
l = config.id2label[ranking[i]]
|
52 |
+
s = scores[ranking[i]]
|
53 |
+
print(f"{i+1}) {l} {np.round(float(s), 4)}")
|
54 |
+
|
55 |
+
from transformers import AutoModelForSequenceClassification
|
56 |
+
from transformers import TFAutoModelForSequenceClassification
|
57 |
+
from transformers import AutoTokenizer, AutoConfig
|
58 |
+
from scipy.special import softmax
|
59 |
+
import gradio as gr
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
# Requirements
|
64 |
model_path = f"avichr/heBERT_sentiment_analysis"
|
65 |
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
|
|
|
97 |
outputs="label",
|
98 |
examples=[["This is something!"]])
|
99 |
|
100 |
+
demo.launch()
|
101 |
+
|