Kolumbus Lindh commited on
Commit
04d9cf4
·
1 Parent(s): 1c65fd3

all things

Browse files
Files changed (2) hide show
  1. app.py +98 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from llama_cpp import Llama
3
+ from huggingface_hub import hf_hub_download
4
+
5
+ # Load the model
6
+ def load_model():
7
+ repo_id = "KolumbusLindh/LoRA-4100"
8
+ model_file = "unsloth.F16.gguf"
9
+
10
+ local_path = hf_hub_download(repo_id=repo_id, filename=model_file)
11
+ print(f"Loading model from: {local_path}")
12
+ return Llama(model_path=local_path, n_ctx=2048, n_threads=8)
13
+
14
+ print("Starting model loading...")
15
+ model = load_model()
16
+ print("Model loaded successfully!")
17
+
18
+ # Function to generate and evaluate content
19
+ def generate_and_evaluate(preconfigured_prompt):
20
+ # Step 1: Generate content
21
+ generation_prompt = [
22
+ {"role": "user", "content": preconfigured_prompt}
23
+ ]
24
+ generated_response = model.create_chat_completion(
25
+ messages=generation_prompt,
26
+ max_tokens=256,
27
+ temperature=1.5
28
+ )
29
+ generated_content = generated_response['choices'][0]['message']['content']
30
+
31
+ # Step 2: Evaluate the generated content
32
+ evaluation_prompt = [
33
+ {"role": "system", "content": "You are a strict language evaluator who provides binary assessments of texts."},
34
+ {"role": "user", "content": f"""Carefully evaluate the generated story:
35
+ Prompt: {preconfigured_prompt}
36
+ Generated response: {generated_content}
37
+ Provide a clear evaluation as follows:
38
+ For each question, write the full question followed by your "Yes" or "No" answer.
39
+ Example format:
40
+ 1. Is the story exactly 50 words? - Yes
41
+ 2. Does the story contain the letter 'a'? - No
42
+ Now answer these questions:
43
+ 1. Is the story exactly 50 words?
44
+ 2. Does the story contain the letter 'a'?
45
+ 3. Does the story contain the word "alabaster"?
46
+ 4. Does the reader understand that the cat's name is Alabaster?
47
+ 5. Is the story 100% in English?
48
+ 6. Does the text rhyme?"""}
49
+ ]
50
+ evaluation_response = model.create_chat_completion(
51
+ messages=evaluation_prompt,
52
+ max_tokens=128,
53
+ temperature=0.2
54
+ )
55
+ evaluation_results = evaluation_response['choices'][0]['message']['content']
56
+
57
+ return generated_content, evaluation_results
58
+
59
+ # Preconfigured prompt
60
+ PRECONFIGURED_PROMPT = """Write a story about the cat Alabaster. It should be exactly 50 words and you are not allowed to use the letter 'a'. The reader must understand that the cat's name is Alabaster. Only replacing the letter 'a' with something like "_" is not enough. The text should rhyme."""
61
+
62
+ # Gradio interface
63
+ with gr.Blocks(title="LLM as a Judge") as demo:
64
+ gr.Markdown("## LLM as a Judge 🧐")
65
+
66
+ generate_evaluate_button = gr.Button("Judge the LLM!")
67
+
68
+ # Label for the preconfigured prompt
69
+ gr.Label("Preconfigured prompt:")
70
+ gr.Label(PRECONFIGURED_PROMPT)
71
+
72
+ generated_output = gr.Textbox(
73
+ label="Generated Content",
74
+ placeholder="The generated content will appear here...",
75
+ lines=5,
76
+ interactive=False
77
+ )
78
+
79
+ evaluation_output = gr.Textbox(
80
+ label="Evaluation Results",
81
+ placeholder="The evaluation results will appear here...",
82
+ lines=8,
83
+ interactive=False
84
+ )
85
+
86
+ # Link generation and evaluation
87
+ generate_evaluate_button.click(
88
+ fn=generate_and_evaluate,
89
+ inputs=[gr.State(PRECONFIGURED_PROMPT)],
90
+ outputs=[generated_output, evaluation_output]
91
+ )
92
+
93
+ # Launch the app
94
+ demo.launch(
95
+ server_name="0.0.0.0",
96
+ server_port=7860,
97
+ share=False
98
+ )
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ huggingface_hub==0.25.2
2
+ gradio
3
+ llama-cpp-python