Spaces:
Sleeping
Sleeping
Kolumbus Lindh
commited on
Commit
·
47aec4f
1
Parent(s):
ca0c241
updates
Browse files
app.py
CHANGED
|
@@ -11,13 +11,13 @@ def load_user_model(repo_id, model_file):
|
|
| 11 |
|
| 12 |
# Generate a response using the specified model and prompt
|
| 13 |
def generate_response(model, prompt):
|
| 14 |
-
response = model(prompt, max_tokens=512, temperature=0.5)
|
| 15 |
return response["choices"][0]["text"]
|
| 16 |
|
| 17 |
# Evaluate responses using the LoRA evaluation model
|
| 18 |
def evaluate_responses(prompt, repo_a, model_a, repo_b, model_b, evaluation_criteria):
|
| 19 |
if len(evaluation_criteria) > 3:
|
| 20 |
-
return "Error: Please select up to 3 evaluation criteria only."
|
| 21 |
|
| 22 |
# Load models
|
| 23 |
model_a_instance = load_user_model(repo_a, model_a)
|
|
@@ -47,17 +47,12 @@ Please evaluate the responses based on the selected criteria. For each criterion
|
|
| 47 |
evaluation_response = lora_model.create_completion(
|
| 48 |
prompt=evaluation_prompt,
|
| 49 |
max_tokens=512,
|
| 50 |
-
temperature=0.5
|
|
|
|
| 51 |
)
|
| 52 |
evaluation_results = evaluation_response["choices"][0]["text"]
|
| 53 |
|
| 54 |
-
|
| 55 |
-
final_output = f"""
|
| 56 |
-
Response A:\n{response_a}\n\n
|
| 57 |
-
Response B:\n{response_b}\n\n
|
| 58 |
-
Evaluation Results:\n{evaluation_results}
|
| 59 |
-
"""
|
| 60 |
-
return final_output
|
| 61 |
|
| 62 |
# Load the LoRA evaluation model
|
| 63 |
def load_lora_model():
|
|
@@ -73,26 +68,38 @@ print("LoRA evaluation model loaded successfully!")
|
|
| 73 |
|
| 74 |
# Gradio interface
|
| 75 |
with gr.Blocks(title="LLM as a Judge") as demo:
|
| 76 |
-
gr.Markdown("## LLM as a Judge
|
| 77 |
|
| 78 |
# Model inputs
|
| 79 |
-
repo_a_input = gr.Textbox(label="Model A Repository", placeholder="
|
| 80 |
-
model_a_input = gr.Textbox(label="Model A File Name", placeholder="
|
| 81 |
-
repo_b_input = gr.Textbox(label="Model B Repository", placeholder="
|
| 82 |
-
model_b_input = gr.Textbox(label="Model B File Name", placeholder="
|
| 83 |
|
| 84 |
# Prompt and criteria inputs
|
| 85 |
prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Enter the prompt here...", lines=3)
|
| 86 |
criteria_dropdown = gr.CheckboxGroup(
|
| 87 |
-
label="Select
|
| 88 |
-
choices=["Clarity", "Completeness", "Accuracy"
|
| 89 |
)
|
| 90 |
|
| 91 |
# Button and outputs
|
| 92 |
evaluate_button = gr.Button("Evaluate Models")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
evaluation_output = gr.Textbox(
|
| 94 |
label="Evaluation Results",
|
| 95 |
-
placeholder="The evaluation
|
| 96 |
lines=20,
|
| 97 |
interactive=False
|
| 98 |
)
|
|
@@ -101,7 +108,7 @@ with gr.Blocks(title="LLM as a Judge") as demo:
|
|
| 101 |
evaluate_button.click(
|
| 102 |
fn=evaluate_responses,
|
| 103 |
inputs=[prompt_input, repo_a_input, model_a_input, repo_b_input, model_b_input, criteria_dropdown],
|
| 104 |
-
outputs=[evaluation_output]
|
| 105 |
)
|
| 106 |
|
| 107 |
# Launch app
|
|
|
|
| 11 |
|
| 12 |
# Generate a response using the specified model and prompt
|
| 13 |
def generate_response(model, prompt):
|
| 14 |
+
response = model(prompt, max_tokens=512, temperature=0.5, top_p=0.95)
|
| 15 |
return response["choices"][0]["text"]
|
| 16 |
|
| 17 |
# Evaluate responses using the LoRA evaluation model
|
| 18 |
def evaluate_responses(prompt, repo_a, model_a, repo_b, model_b, evaluation_criteria):
|
| 19 |
if len(evaluation_criteria) > 3:
|
| 20 |
+
return "Error: Please select up to 3 evaluation criteria only.", "", ""
|
| 21 |
|
| 22 |
# Load models
|
| 23 |
model_a_instance = load_user_model(repo_a, model_a)
|
|
|
|
| 47 |
evaluation_response = lora_model.create_completion(
|
| 48 |
prompt=evaluation_prompt,
|
| 49 |
max_tokens=512,
|
| 50 |
+
temperature=0.5,
|
| 51 |
+
top_p=0.95,
|
| 52 |
)
|
| 53 |
evaluation_results = evaluation_response["choices"][0]["text"]
|
| 54 |
|
| 55 |
+
return response_a, response_b, evaluation_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
# Load the LoRA evaluation model
|
| 58 |
def load_lora_model():
|
|
|
|
| 68 |
|
| 69 |
# Gradio interface
|
| 70 |
with gr.Blocks(title="LLM as a Judge") as demo:
|
| 71 |
+
gr.Markdown("## LLM as a Judge 𐄷")
|
| 72 |
|
| 73 |
# Model inputs
|
| 74 |
+
repo_a_input = gr.Textbox(label="Model A Repository", placeholder="KolumbusLindh/LoRA-6150")
|
| 75 |
+
model_a_input = gr.Textbox(label="Model A File Name", placeholder="unsloth.F16.gguf")
|
| 76 |
+
repo_b_input = gr.Textbox(label="Model B Repository", placeholder="forestav/LoRA-2000")
|
| 77 |
+
model_b_input = gr.Textbox(label="Model B File Name", placeholder="unsloth.F16.gguf")
|
| 78 |
|
| 79 |
# Prompt and criteria inputs
|
| 80 |
prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Enter the prompt here...", lines=3)
|
| 81 |
criteria_dropdown = gr.CheckboxGroup(
|
| 82 |
+
label="Select Evaluation Criteria (Max 3)",
|
| 83 |
+
choices=["Clarity", "Completeness", "Accuracy"] # Restricted criteria
|
| 84 |
)
|
| 85 |
|
| 86 |
# Button and outputs
|
| 87 |
evaluate_button = gr.Button("Evaluate Models")
|
| 88 |
+
response_a_output = gr.Textbox(
|
| 89 |
+
label="Response A",
|
| 90 |
+
placeholder="Response from Model A will appear here...",
|
| 91 |
+
lines=10,
|
| 92 |
+
interactive=False
|
| 93 |
+
)
|
| 94 |
+
response_b_output = gr.Textbox(
|
| 95 |
+
label="Response B",
|
| 96 |
+
placeholder="Response from Model B will appear here...",
|
| 97 |
+
lines=10,
|
| 98 |
+
interactive=False
|
| 99 |
+
)
|
| 100 |
evaluation_output = gr.Textbox(
|
| 101 |
label="Evaluation Results",
|
| 102 |
+
placeholder="The evaluation analysis will appear here...",
|
| 103 |
lines=20,
|
| 104 |
interactive=False
|
| 105 |
)
|
|
|
|
| 108 |
evaluate_button.click(
|
| 109 |
fn=evaluate_responses,
|
| 110 |
inputs=[prompt_input, repo_a_input, model_a_input, repo_b_input, model_b_input, criteria_dropdown],
|
| 111 |
+
outputs=[response_a_output, response_b_output, evaluation_output]
|
| 112 |
)
|
| 113 |
|
| 114 |
# Launch app
|