import gradio as gr from llama_cpp import Llama from huggingface_hub import hf_hub_download # Load LoRA-4100 model for evaluation def load_lora_model(): repo_id = "KolumbusLindh/LoRA-4100" model_file = "unsloth.F16.gguf" local_path = hf_hub_download(repo_id=repo_id, filename=model_file) print(f"Loading LoRA model from: {local_path}") return Llama(model_path=local_path, n_ctx=2048, n_threads=8) lora_model = load_lora_model() print("LoRA model loaded successfully!") # Load user-specified model def load_user_model(model_path): print(f"Loading user model from: {model_path}") return Llama(model_path=model_path, n_ctx=2048, n_threads=8) # Generate response using a specified model and prompt def generate_response(model_path, prompt): user_model = load_user_model(model_path) response = user_model(prompt, max_tokens=256, temperature=0.7) return response["choices"][0]["text"] # Evaluate responses using the LoRA model def evaluate_responses(prompt, model_a_path, model_b_path, evaluation_criteria): # Generate responses response_a = generate_response(model_a_path, prompt) response_b = generate_response(model_b_path, prompt) # Format the evaluation prompt evaluation_prompt = [ {"role": "system", "content": "You are an objective and thorough evaluator of instruction-based responses."}, {"role": "user", "content": f""" Prompt: {prompt} Response A: {response_a} Response B: {response_b} Please evaluate both responses based on the following criteria: {evaluation_criteria} For each criterion, provide a rating of the responses on a scale from 1 to 10, and explain why each response earned that rating. Then, declare a winner (or 'draw' if both are equal). """} ] # Generate the evaluation evaluation_response = lora_model.create_chat_completion( messages=evaluation_prompt, max_tokens=512, temperature=0.5 ) evaluation_results = evaluation_response['choices'][0]['message']['content'] return evaluation_results # Gradio interface with gr.Blocks(title="LLM as a Judge") as demo: gr.Markdown("## LLM as a Judge 🧐") # Inputs for model paths, prompt, and evaluation criteria model_a_input = gr.Textbox(label="Model A Path or URL", placeholder="Enter the path or URL to Model A...") model_b_input = gr.Textbox(label="Model B Path or URL", placeholder="Enter the path or URL to Model B...") prompt_input = gr.Textbox(label="Enter the Prompt", placeholder="Enter the prompt here...", lines=3) # Dropdown for evaluation criteria criteria_dropdown = gr.Dropdown( label="Select Evaluation Criteria", choices=["Clarity", "Completeness", "Accuracy", "Relevance", "User-Friendliness", "Depth", "Creativity"], value="Clarity", type="value" ) # Button to evaluate responses evaluate_button = gr.Button("Evaluate Models") # Output for evaluation results evaluation_output = gr.Textbox( label="Evaluation Results", placeholder="The evaluation results will appear here...", lines=10, interactive=False ) # Link evaluation function to the button evaluate_button.click( fn=evaluate_responses, inputs=[prompt_input, model_a_input, model_b_input, criteria_dropdown], outputs=[evaluation_output] ) # Launch the app if __name__ == "__main__": demo.launch()