import gradio as gr from llama_cpp import Llama from huggingface_hub import hf_hub_download # Function to load a user-specified model from Hugging Face def load_user_model(repo_id, model_file): print(f"Downloading model {model_file} from repository {repo_id}...") local_path = hf_hub_download(repo_id=repo_id, filename=model_file) print(f"Model downloaded to: {local_path}") return Llama(model_path=local_path, n_ctx=2048, n_threads=8) # Generate a response using the specified model and prompt def generate_response(model, prompt): response = model(prompt, max_tokens=256, temperature=0.7) return response["choices"][0]["text"] # Evaluate responses generated by two models using the LoRA evaluation model def evaluate_responses(prompt, repo_a, model_a, repo_b, model_b, evaluation_criteria): # Load user-specified models model_a_instance = load_user_model(repo_a, model_a) model_b_instance = load_user_model(repo_b, model_b) # Generate responses response_a = generate_response(model_a_instance, prompt) response_b = generate_response(model_b_instance, prompt) print(f"Response A: {response_a}") print(f"Response B: {response_b}") # Format the evaluation prompt for the LoRA model evaluation_prompt = f""" Prompt: {prompt} Response A: {response_a} Response B: {response_b} Evaluation Criteria: {evaluation_criteria} Please evaluate the responses based on the criteria above. Rate each response on a scale from 1 to 10 for each criterion and provide a detailed explanation. Finally, declare a winner or state 'draw' if they are equal. """ # Use the LoRA model to evaluate the responses evaluation_response = lora_model.create_completion( prompt=evaluation_prompt, max_tokens=512, temperature=0.5 ) return evaluation_response["choices"][0]["text"] # Load the base LoRA evaluation model def load_lora_model(): repo_id = "KolumbusLindh/LoRA-4100" model_file = "unsloth.F16.gguf" print(f"Downloading LoRA evaluation model from repository {repo_id}...") local_path = hf_hub_download(repo_id=repo_id, filename=model_file) print(f"LoRA evaluation model downloaded to: {local_path}") return Llama(model_path=local_path, n_ctx=2048, n_threads=8) lora_model = load_lora_model() print("LoRA evaluation model loaded successfully!") # Gradio interface with gr.Blocks(title="LLM as a Judge") as demo: gr.Markdown("## LLM as a Judge 🧐") # Inputs for Model A repository and file repo_a_input = gr.Textbox(label="Model A Repository (e.g., KolumbusLindh/LoRA-4100)", placeholder="Enter the Hugging Face repo name for Model A...") model_a_input = gr.Textbox(label="Model A File Name (e.g., unsloth.F16.gguf)", placeholder="Enter the model filename for Model A...") # Inputs for Model B repository and file repo_b_input = gr.Textbox(label="Model B Repository (e.g., KolumbusLindh/LoRA-4100)", placeholder="Enter the Hugging Face repo name for Model B...") model_b_input = gr.Textbox(label="Model B File Name (e.g., unsloth.F16.gguf)", placeholder="Enter the model filename for Model B...") # Input for prompt and evaluation criteria prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Enter the prompt here...", lines=3) criteria_dropdown = gr.Dropdown( label="Select Evaluation Criteria", choices=["Clarity", "Completeness", "Accuracy", "Relevance", "User-Friendliness", "Depth", "Creativity"], value="Clarity", type="value" ) # Button to evaluate responses evaluate_button = gr.Button("Evaluate Models") # Output for evaluation results evaluation_output = gr.Textbox( label="Evaluation Results", placeholder="The evaluation results will appear here...", lines=10, interactive=False ) # Link the evaluation function to the button evaluate_button.click( fn=evaluate_responses, inputs=[prompt_input, repo_a_input, model_a_input, repo_b_input, model_b_input, criteria_dropdown], outputs=[evaluation_output] ) # Launch the Gradio app if __name__ == "__main__": demo.launch() # Add share=True to create a public link