import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM model_name = "Kongfha/PhraAphaiManee-LM" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) nlp = pipeline("text-generation", model=model, tokenizer=tokenizer) def generate(input_sentence, top_k=50, temperature=1.0, max_length=140): generated_text = nlp(input_sentence, max_length=int(max_length), do_sample=True, top_k=int(top_k), temperature=float(temperature)) return generated_text[0]['generated_text'] inputs = [ gr.inputs.Textbox(label="Input Sentence"), gr.inputs.Number(default=50, label="Top K"), gr.inputs.Slider(minimum=0.1, maximum=2.0, default=1.0, label="Temperature", step=0.1), gr.inputs.Number(default=140, label="Max Length") ] outputs = gr.outputs.Textbox(label="Generated Text") examples = [ ["๏ เรือล่อง", 50, 1.0, 60], ["๏ แม้นชีวี", 30, 0.8, 60], ["๏ หากวันใด", 50, 1.0, 60], ["๏ หากจำเป็น", 70, 1.5, 60] ] iface = gr.Interface( fn=generate, inputs=inputs, outputs=outputs, examples=examples, title="PhraAphaiManee-LM (แต่งกลอนสไตล์พระอภัยมณี ด้วย GPT-2)", description="โมเดลนี้เป็นโมเดล GPT-2 ที่ถูกเทรนบนชุดข้อมูลพระอภัยมณี" ) iface.launch()