Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
2 |
+
from qwen_vl_utils import process_vision_info
|
3 |
+
import torch
|
4 |
+
import uuid
|
5 |
+
from moviepy.editor import VideoFileClip
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
9 |
+
import cv2
|
10 |
+
from ultralytics import YOLO
|
11 |
+
from heapq import heappush, heappushpop
|
12 |
+
import numpy as np
|
13 |
+
import uuid
|
14 |
+
import uuid
|
15 |
+
from ultralytics import YOLO
|
16 |
+
import gradio as gr
|
17 |
+
|
18 |
+
# # default: Load the model on the available device(s)
|
19 |
+
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
20 |
+
# "Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
|
21 |
+
# )
|
22 |
+
|
23 |
+
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
24 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
25 |
+
"Qwen/Qwen2-VL-7B-Instruct",
|
26 |
+
torch_dtype=torch.bfloat16,
|
27 |
+
attn_implementation="flash_attention_2",
|
28 |
+
device_map="auto",
|
29 |
+
)
|
30 |
+
|
31 |
+
# default processer
|
32 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
33 |
+
|
34 |
+
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
|
35 |
+
# min_pixels = 256*28*28
|
36 |
+
# max_pixels = 1280*28*28
|
37 |
+
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
38 |
+
|
39 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
40 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
41 |
+
|
42 |
+
model_id = "openai/whisper-large-v3"
|
43 |
+
|
44 |
+
model_whisper = AutoModelForSpeechSeq2Seq.from_pretrained(
|
45 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
46 |
+
)
|
47 |
+
model_whisper.to(device)
|
48 |
+
|
49 |
+
processor_whisper = AutoProcessor.from_pretrained(model_id)
|
50 |
+
|
51 |
+
pipe = pipeline(
|
52 |
+
"automatic-speech-recognition",
|
53 |
+
model=model_whisper,
|
54 |
+
tokenizer=processor_whisper.tokenizer,
|
55 |
+
feature_extractor=processor_whisper.feature_extractor,
|
56 |
+
torch_dtype=torch_dtype,
|
57 |
+
device=device,
|
58 |
+
return_timestamps=True
|
59 |
+
)
|
60 |
+
|
61 |
+
output_directory = "temp" # Replace with your desired output directory
|
62 |
+
os.makedirs(output_directory, exist_ok=True)
|
63 |
+
|
64 |
+
def extract_audio(video_path):
|
65 |
+
try:
|
66 |
+
# Load the video file
|
67 |
+
video = VideoFileClip(video_path)
|
68 |
+
|
69 |
+
# Extract the audio
|
70 |
+
audio = video.audio
|
71 |
+
|
72 |
+
# Generate a unique filename using uuid
|
73 |
+
unique_filename = f"{uuid.uuid4()}.mp3"
|
74 |
+
audio_output_path = f"{output_directory}/{unique_filename}"
|
75 |
+
|
76 |
+
# Save the audio to the unique file
|
77 |
+
audio.write_audiofile(audio_output_path)
|
78 |
+
|
79 |
+
result = pipe(audio_output_path)
|
80 |
+
|
81 |
+
os.remove(audio_output_path)
|
82 |
+
|
83 |
+
return result["text"]
|
84 |
+
|
85 |
+
except Exception as e:
|
86 |
+
|
87 |
+
print(f"Error: {str(e)}")
|
88 |
+
|
89 |
+
return ""
|
90 |
+
|
91 |
+
output_dir = '/content/images'
|
92 |
+
model_yolo = YOLO('/content/drive/MyDrive/CCIB-AI-YOLO/runs/detect/train/weights/best.pt')
|
93 |
+
|
94 |
+
def extract_top_weapon_frames(video_path, threshold=30):
|
95 |
+
os.makedirs(output_dir, exist_ok=True)
|
96 |
+
saved_paths = {
|
97 |
+
'original': [], # Paths for original frames
|
98 |
+
'boxed': [] # Paths for frames with boxes
|
99 |
+
}
|
100 |
+
|
101 |
+
|
102 |
+
weapon_classes = ['weapon', 'knife']
|
103 |
+
top_frames = [] # (confidence_score, original_frame, boxed_frame, frame_number)
|
104 |
+
|
105 |
+
cap = cv2.VideoCapture(video_path)
|
106 |
+
if not cap.isOpened():
|
107 |
+
print("Error: Could not open video.")
|
108 |
+
return saved_paths
|
109 |
+
|
110 |
+
ret, prev_frame = cap.read()
|
111 |
+
if not ret:
|
112 |
+
print("Error: Could not read the first frame.")
|
113 |
+
return saved_paths
|
114 |
+
|
115 |
+
prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)
|
116 |
+
frame_number = 0
|
117 |
+
|
118 |
+
while True:
|
119 |
+
ret, frame = cap.read()
|
120 |
+
if not ret:
|
121 |
+
break
|
122 |
+
|
123 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
124 |
+
frame_diff = cv2.absdiff(gray, prev_gray)
|
125 |
+
mean_diff = frame_diff.mean()
|
126 |
+
|
127 |
+
if mean_diff > threshold:
|
128 |
+
print(f"Processing frame {frame_number}")
|
129 |
+
results = model_yolo.predict(source=frame, show=False)
|
130 |
+
|
131 |
+
frame_max_conf = 0
|
132 |
+
frame_with_boxes = frame.copy()
|
133 |
+
|
134 |
+
for result in results:
|
135 |
+
for box in result.boxes:
|
136 |
+
class_id = int(box.cls[0])
|
137 |
+
class_name = model_yolo.names[class_id]
|
138 |
+
confidence = float(box.conf[0])
|
139 |
+
|
140 |
+
if class_name in weapon_classes:
|
141 |
+
frame_max_conf = max(frame_max_conf, confidence)
|
142 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
143 |
+
cv2.rectangle(frame_with_boxes, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
144 |
+
label = f"{class_name} ({confidence:.2f})"
|
145 |
+
cv2.putText(frame_with_boxes, label, (x1, y1 - 10),
|
146 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
147 |
+
|
148 |
+
if frame_max_conf > 0:
|
149 |
+
if len(top_frames) < 2:
|
150 |
+
heappush(top_frames, (frame_max_conf, frame.copy(), frame_with_boxes, frame_number))
|
151 |
+
elif frame_max_conf > top_frames[0][0]:
|
152 |
+
heappushpop(top_frames, (frame_max_conf, frame.copy(), frame_with_boxes, frame_number))
|
153 |
+
|
154 |
+
prev_gray = gray
|
155 |
+
frame_number += 1
|
156 |
+
|
157 |
+
# Save the top 2 frames (both original and with boxes)
|
158 |
+
for confidence, original_frame, boxed_frame, _ in sorted(top_frames, reverse=True):
|
159 |
+
# Save original frame
|
160 |
+
original_filename = f"{uuid.uuid4()}.jpg"
|
161 |
+
original_path = os.path.join(output_dir, original_filename)
|
162 |
+
cv2.imwrite(original_path, original_frame)
|
163 |
+
saved_paths['original'].append(original_path)
|
164 |
+
|
165 |
+
# Save frame with boxes
|
166 |
+
boxed_filename = f"{uuid.uuid4()}.jpg"
|
167 |
+
boxed_path = os.path.join(output_dir, boxed_filename)
|
168 |
+
cv2.imwrite(boxed_path, boxed_frame)
|
169 |
+
saved_paths['boxed'].append(boxed_path)
|
170 |
+
|
171 |
+
print(f"Saved frame pair with confidence {confidence:.3f}")
|
172 |
+
|
173 |
+
cap.release()
|
174 |
+
return saved_paths
|
175 |
+
|
176 |
+
def detect_weapon_image(source_image_path):
|
177 |
+
|
178 |
+
# Ensure the output directory exists
|
179 |
+
os.makedirs(output_dir, exist_ok=True)
|
180 |
+
|
181 |
+
# Run YOLO predictions
|
182 |
+
results = model_yolo.predict(source=source_image_path, save=False, show=False)
|
183 |
+
|
184 |
+
# List to store paths to saved images
|
185 |
+
saved_paths = []
|
186 |
+
|
187 |
+
for result in results:
|
188 |
+
# Get the annotated image
|
189 |
+
annotated_img = result.plot()
|
190 |
+
|
191 |
+
# Generate a unique filename using UUID
|
192 |
+
unique_filename = f"{uuid.uuid4()}.jpg"
|
193 |
+
output_path = os.path.join(output_dir, unique_filename)
|
194 |
+
|
195 |
+
# Save the annotated image
|
196 |
+
cv2.imwrite(output_path, annotated_img)
|
197 |
+
saved_paths.append(output_path)
|
198 |
+
|
199 |
+
return saved_paths
|
200 |
+
def response(messages):
|
201 |
+
# Preparation for inference
|
202 |
+
text = processor.apply_chat_template(
|
203 |
+
messages, tokenize=False, add_generation_prompt=True
|
204 |
+
)
|
205 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
206 |
+
inputs = processor(
|
207 |
+
text=[text],
|
208 |
+
images=image_inputs,
|
209 |
+
videos=video_inputs,
|
210 |
+
padding=True,
|
211 |
+
return_tensors="pt",
|
212 |
+
)
|
213 |
+
inputs = inputs.to("cuda")
|
214 |
+
|
215 |
+
# Inference: Generation of the output
|
216 |
+
generated_ids = model.generate(**inputs, max_new_tokens=1024)
|
217 |
+
generated_ids_trimmed = [
|
218 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
219 |
+
]
|
220 |
+
output_text = processor.batch_decode(
|
221 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
222 |
+
)
|
223 |
+
return output_text[0]
|
224 |
+
|
225 |
+
|
226 |
+
system_prompt = """
|
227 |
+
Analyze the image for illegal items or contraband. Detect and categorize objects like guns, knives, drugs, and hidden compartments. Highlight areas of interest and provide:
|
228 |
+
|
229 |
+
1. A detailed explanation in Thai describing illegal items and their context.
|
230 |
+
2. A JSON output summarizing the findings.
|
231 |
+
|
232 |
+
Output Example:
|
233 |
+
1. Explanation (Thai): (detailed explanation in Thai describing illegal items and their context.)
|
234 |
+
2. JSON: [{"category": "weapon", "type": "gun"}]
|
235 |
+
"""
|
236 |
+
|
237 |
+
|
238 |
+
def is_mp4_file(file_path):
|
239 |
+
return os.path.isfile(file_path) and file_path.lower().endswith(".mp4")
|
240 |
+
|
241 |
+
def process_inputs(text_input, file_input):
|
242 |
+
|
243 |
+
if is_mp4_file(file_input):
|
244 |
+
extract_images_from_video = extract_top_weapon_frames(file_input)
|
245 |
+
transcription = extract_audio(file_input)
|
246 |
+
|
247 |
+
try:
|
248 |
+
# Prepare image content for messages
|
249 |
+
image_content = []
|
250 |
+
|
251 |
+
# Check if we have any original images
|
252 |
+
if extract_images_from_video['original']:
|
253 |
+
# Add first image if available
|
254 |
+
image_content.append({
|
255 |
+
"type": "image",
|
256 |
+
"image": f"file://{extract_images_from_video['original'][0]}"
|
257 |
+
})
|
258 |
+
|
259 |
+
# Add second image if available
|
260 |
+
if len(extract_images_from_video['original']) > 1:
|
261 |
+
image_content.append({
|
262 |
+
"type": "image",
|
263 |
+
"image": f"file://{extract_images_from_video['original'][1]}"
|
264 |
+
})
|
265 |
+
|
266 |
+
# Create messages list with available content
|
267 |
+
messages = [{"role": "system", "content": system_prompt},
|
268 |
+
{
|
269 |
+
"role": "user",
|
270 |
+
"content": [
|
271 |
+
*image_content, # Unpack available image content
|
272 |
+
{"type": "text", "text": f"Content From Social Media Post: {text_input}."},
|
273 |
+
{"type": "text", "text": f"this is transcription from video:{transcription}"}
|
274 |
+
]
|
275 |
+
}
|
276 |
+
]
|
277 |
+
|
278 |
+
# Return response and available boxed images (empty list if none)
|
279 |
+
result = response(messages), extract_images_from_video.get('boxed', [])
|
280 |
+
return result
|
281 |
+
|
282 |
+
except Exception as e:
|
283 |
+
return f"Error: {str(e)}", []
|
284 |
+
|
285 |
+
|
286 |
+
else:
|
287 |
+
try:
|
288 |
+
# Call your response function with text and file path
|
289 |
+
messages = [ {"role": "system", "content": system_prompt},
|
290 |
+
|
291 |
+
{
|
292 |
+
"role": "user",
|
293 |
+
"content": [
|
294 |
+
{
|
295 |
+
"type": "image",
|
296 |
+
"image": f"file://{file_input}",
|
297 |
+
},
|
298 |
+
{"type": "text", "text": f"Content From Social Media Post: {text_input}."},
|
299 |
+
],
|
300 |
+
}]
|
301 |
+
|
302 |
+
result = response(messages)
|
303 |
+
detect_weapon = detect_weapon_image(file_input)
|
304 |
+
# Optionally, delete the temporary file after processing
|
305 |
+
|
306 |
+
return result,detect_weapon
|
307 |
+
except Exception as e:
|
308 |
+
# Handle any exceptions and return the error
|
309 |
+
return f"Error: {str(e)}",[]
|
310 |
+
|
311 |
+
# Create the Gradio interface
|
312 |
+
demo = gr.Interface(
|
313 |
+
fn=process_inputs,
|
314 |
+
inputs=[
|
315 |
+
gr.Textbox(
|
316 |
+
label="Text Input",
|
317 |
+
placeholder="Enter your text here...",
|
318 |
+
lines=3
|
319 |
+
),
|
320 |
+
gr.File(
|
321 |
+
label="File Upload",
|
322 |
+
file_types=[".mp4", ".png", ".jpeg",".jpg"],
|
323 |
+
type="filepath"
|
324 |
+
)
|
325 |
+
],
|
326 |
+
outputs= [gr.Textbox(label="Process Results", lines=8),
|
327 |
+
gr.Gallery(label="Generated images", show_label=False, elem_id="gallery", columns=[2], rows=[1], object_fit="contain", height="auto")],
|
328 |
+
|
329 |
+
title="Text and File Input Processor Qwen2-VL-7B-Instruct",
|
330 |
+
description="Enter text and/or upload a file to process them together",
|
331 |
+
)
|
332 |
+
|
333 |
+
if __name__ == "__main__":
|
334 |
+
demo.launch()
|