Spaces:
Running
Running
KoonJamesZ
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import TableTransformerForObjectDetection
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from transformers import DetrFeatureExtractor
|
6 |
+
import pandas as pd
|
7 |
+
import uuid
|
8 |
+
from surya.ocr import run_ocr
|
9 |
+
# from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
|
10 |
+
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
|
11 |
+
from surya.model.recognition.model import load_model as load_rec_model
|
12 |
+
from surya.model.recognition.processor import load_processor as load_rec_processor
|
13 |
+
from PIL import ImageDraw, Image
|
14 |
+
import os
|
15 |
+
from pdf2image import convert_from_path
|
16 |
+
import tempfile
|
17 |
+
from ultralyticsplus import YOLO, render_result
|
18 |
+
import cv2
|
19 |
+
import numpy as np
|
20 |
+
from fpdf import FPDF
|
21 |
+
|
22 |
+
def convert_pdf_images(pdf_path):
|
23 |
+
# Convert PDF to images
|
24 |
+
images = convert_from_path(pdf_path)
|
25 |
+
|
26 |
+
# Save each page as a temporary image and collect file paths
|
27 |
+
temp_file_paths = []
|
28 |
+
for i, page in enumerate(images):
|
29 |
+
# Create a temporary file with a unique name
|
30 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
31 |
+
page.save(temp_file.name, 'PNG') # Save the image to the temporary file
|
32 |
+
temp_file_paths.append(temp_file.name) # Add file path to the list
|
33 |
+
|
34 |
+
return temp_file_paths[0] # Return the list of temporary file paths
|
35 |
+
|
36 |
+
|
37 |
+
# Load model
|
38 |
+
model_yolo = YOLO('keremberke/yolov8m-table-extraction')
|
39 |
+
|
40 |
+
# Set model parameters
|
41 |
+
model_yolo.overrides['conf'] = 0.25 # NMS confidence threshold
|
42 |
+
model_yolo.overrides['iou'] = 0.45 # NMS IoU threshold
|
43 |
+
model_yolo.overrides['agnostic_nms'] = False # NMS class-agnostic
|
44 |
+
model_yolo.overrides['max_det'] = 1000 # maximum number of detections per image
|
45 |
+
def resize_image(image, max_dimension=4200, min_dimension=50):
|
46 |
+
width, height = image.size
|
47 |
+
# Check if the dimensions are within range
|
48 |
+
if width > max_dimension or height > max_dimension or width < min_dimension or height < min_dimension:
|
49 |
+
scaling_factor = min(max_dimension / max(width, height), min_dimension / min(width, height))
|
50 |
+
new_width = int(width * scaling_factor)
|
51 |
+
new_height = int(height * scaling_factor)
|
52 |
+
return image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
53 |
+
return image
|
54 |
+
def crop_table(filename):
|
55 |
+
# Set image
|
56 |
+
image_path = filename
|
57 |
+
image = Image.open(image_path)
|
58 |
+
image_np = np.array(image)
|
59 |
+
|
60 |
+
# Perform inference
|
61 |
+
results = model_yolo.predict(image_path)
|
62 |
+
|
63 |
+
# Extract the first bounding box (assuming there's only one table)
|
64 |
+
bbox = results[0].boxes[0]
|
65 |
+
x1, y1, x2, y2 = map(int, bbox.xyxy[0]) # Get the bounding box coordinates
|
66 |
+
|
67 |
+
# Crop the image using the bounding box coordinates
|
68 |
+
cropped_image = image_np[y1:y2, x1:x2]
|
69 |
+
|
70 |
+
# Convert the cropped image to RGB (if it's not already in RGB)
|
71 |
+
cropped_image_rgb = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB)
|
72 |
+
|
73 |
+
# Save the cropped image as a PDF
|
74 |
+
cropped_image_pil = Image.fromarray(cropped_image_rgb)
|
75 |
+
# Save the cropped image to a temporary file
|
76 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
77 |
+
cropped_image_pil.save(temp_file.name)
|
78 |
+
|
79 |
+
return temp_file.name
|
80 |
+
|
81 |
+
# new v1.1 checkpoints require no timm anymore
|
82 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
83 |
+
langs = ["en","th"] # Replace with your languages - optional but recommended
|
84 |
+
det_processor, det_model = load_det_processor(), load_det_model()
|
85 |
+
rec_model, rec_processor = load_rec_model(), load_rec_processor()
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
|
90 |
+
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
|
91 |
+
feature_extractor = DetrFeatureExtractor()
|
92 |
+
|
93 |
+
model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all")
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
def compute_boxes(image_path):
|
98 |
+
image = Image.open(image_path).convert("RGB")
|
99 |
+
width, height = image.size
|
100 |
+
|
101 |
+
encoding = feature_extractor(image, return_tensors="pt")
|
102 |
+
|
103 |
+
with torch.no_grad():
|
104 |
+
outputs = model(**encoding)
|
105 |
+
|
106 |
+
results = feature_extractor.post_process_object_detection(outputs, threshold=0.7, target_sizes=[(height, width)])[0]
|
107 |
+
boxes = results['boxes'].tolist()
|
108 |
+
labels = results['labels'].tolist()
|
109 |
+
|
110 |
+
return boxes,labels
|
111 |
+
|
112 |
+
def extract_table(image_path):
|
113 |
+
image = Image.open(image_path)
|
114 |
+
boxes,labels = compute_boxes(image_path)
|
115 |
+
|
116 |
+
|
117 |
+
cropped_table_visualized = image.copy()
|
118 |
+
draw = ImageDraw.Draw(cropped_table_visualized)
|
119 |
+
|
120 |
+
for cell in boxes:
|
121 |
+
draw.rectangle(cell, outline="red")
|
122 |
+
bbox_table = f"{str(uuid.uuid4())}.png"
|
123 |
+
cropped_table_visualized.save(bbox_table)
|
124 |
+
cell_locations = []
|
125 |
+
|
126 |
+
for box_row, label_row in zip(boxes, labels):
|
127 |
+
if label_row == 2:
|
128 |
+
for box_col, label_col in zip(boxes, labels):
|
129 |
+
if label_col == 1:
|
130 |
+
cell_box = (box_col[0], box_row[1], box_col[2], box_row[3])
|
131 |
+
cell_locations.append(cell_box)
|
132 |
+
|
133 |
+
cell_locations.sort(key=lambda x: (x[1], x[0]))
|
134 |
+
|
135 |
+
num_columns = 0
|
136 |
+
box_old = cell_locations[0]
|
137 |
+
|
138 |
+
for box in cell_locations[1:]:
|
139 |
+
x1, y1, x2, y2 = box
|
140 |
+
x1_old, y1_old, x2_old, y2_old = box_old
|
141 |
+
num_columns += 1
|
142 |
+
if y1 > y1_old:
|
143 |
+
break
|
144 |
+
|
145 |
+
box_old = box
|
146 |
+
|
147 |
+
headers = []
|
148 |
+
for box in cell_locations[:num_columns]:
|
149 |
+
x1, y1, x2, y2 = box
|
150 |
+
cell_image = resize_image(image.crop((x1, y1, x2, y2)))
|
151 |
+
# new_width = cell_image.width *4
|
152 |
+
# new_height = cell_image.height *4
|
153 |
+
# cell_image = cell_image.resize((new_width, new_height), resample=Image.LANCZOS)
|
154 |
+
# cell_text = pytesseract.image_to_string(cell_image, lang='tha+eng')
|
155 |
+
# print(cell_text)
|
156 |
+
|
157 |
+
plt.figure()
|
158 |
+
plt.imshow(cell_image)
|
159 |
+
plt.axis("off")
|
160 |
+
plt.title("Cropped Cell Image")
|
161 |
+
plt.show()
|
162 |
+
|
163 |
+
predictions = run_ocr([cell_image], [langs], det_model, det_processor, rec_model, rec_processor)
|
164 |
+
texts = [line.text for line in predictions[0].text_lines]
|
165 |
+
all_text = ' '.join(texts)
|
166 |
+
print(all_text)
|
167 |
+
if all_text:
|
168 |
+
headers.append(all_text)
|
169 |
+
else:
|
170 |
+
headers.append('')
|
171 |
+
|
172 |
+
|
173 |
+
df = pd.DataFrame(columns=headers)
|
174 |
+
|
175 |
+
row = []
|
176 |
+
for box in cell_locations[num_columns:]:
|
177 |
+
x1, y1, x2, y2 = box
|
178 |
+
cell_image = resize_image(image.crop((x1, y1, x2, y2)))
|
179 |
+
# new_width = cell_image.width * 4
|
180 |
+
# new_height = cell_image.height * 4
|
181 |
+
# cell_image = cell_image.resize((new_width, new_height), resample=Image.LANCZOS)
|
182 |
+
# cell_text = pytesseract.image_to_string(cell_image, lang='tha+eng')
|
183 |
+
# print(cell_text)
|
184 |
+
|
185 |
+
plt.figure()
|
186 |
+
plt.imshow(cell_image)
|
187 |
+
plt.axis("off")
|
188 |
+
plt.title("Cropped Cell Image")
|
189 |
+
plt.show()
|
190 |
+
predictions = run_ocr([cell_image], [langs], det_model, det_processor, rec_model, rec_processor)
|
191 |
+
texts = [line.text for line in predictions[0].text_lines]
|
192 |
+
all_text = ''.join(texts)
|
193 |
+
print(all_text)
|
194 |
+
if all_text:
|
195 |
+
headers.append(all_text)
|
196 |
+
else:
|
197 |
+
headers.append('')
|
198 |
+
|
199 |
+
row.append(all_text)
|
200 |
+
|
201 |
+
if len(row) == num_columns:
|
202 |
+
df.loc[len(df)] = row
|
203 |
+
print(row)
|
204 |
+
row = []
|
205 |
+
filepath = f"{str(uuid.uuid4())}.csv"
|
206 |
+
df.to_csv(filepath, index=False)
|
207 |
+
return filepath, bbox_table
|
208 |
+
|
209 |
+
# Function to process the uploaded file
|
210 |
+
def process_file(uploaded_file):
|
211 |
+
images_table = convert_pdf_images(uploaded_file)
|
212 |
+
croped_table = crop_table(images_table)
|
213 |
+
filepath, bbox_table = extract_table(croped_table)
|
214 |
+
os.remove(images_table)
|
215 |
+
os.remove(croped_table)
|
216 |
+
return filepath, bbox_table # Return the file path for download
|
217 |
+
|
218 |
+
# Function to clear the inputs and outputs
|
219 |
+
def clear_inputs():
|
220 |
+
return None, None, None # Clear both input and output
|
221 |
+
|
222 |
+
# Define the Gradio interface
|
223 |
+
with gr.Blocks() as demo:
|
224 |
+
gr.Markdown("## Upload a PDF, Process it, and Download the Processed File")
|
225 |
+
|
226 |
+
with gr.Row():
|
227 |
+
upload = gr.File(label="Upload PDF", type="filepath", file_types=[".pdf"])
|
228 |
+
download = gr.File(label="Download Processed PDF")
|
229 |
+
with gr.Row():
|
230 |
+
process_button = gr.Button("Process")
|
231 |
+
clear_button = gr.Button("Clear") # Custom clear button
|
232 |
+
image_display = gr.Image(label="Processed Image")
|
233 |
+
|
234 |
+
# Trigger the file processing with the button click
|
235 |
+
process_button.click(process_file, inputs=upload, outputs=[download, image_display])
|
236 |
+
|
237 |
+
# Trigger clearing inputs and outputs
|
238 |
+
clear_button.click(clear_inputs, inputs=None, outputs=[upload, download, image_display])
|
239 |
+
|
240 |
+
# Launch the interface
|
241 |
+
demo.launch()
|
242 |
+
|
243 |
+
# print(process_file("/content/give me a example table - give me a example table.pdf"))
|