Spaces:
Build error
Build error
File size: 2,135 Bytes
2ef7c17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import torch
from fastapi import FastAPI
from pydantic import BaseModel
import numpy as np
import base64
import io
from scipy.io.wavfile import write
import sounddevice as sd
# 自定义模块
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
# 检查 PyTorch 版本
print(torch.__version__)
# 检查 CUDA 是否可用
print(torch.cuda.is_available())
# 检查当前 CUDA 版本
print(torch.version.cuda)
# FastAPI 应用
app = FastAPI()
# 请求体模型
class TextRequest(BaseModel):
text: str
# 加载配置和模型
config_path = "configs/steins_gate_base.json"
checkpoint_path = "G_265000.pth"
hps = utils.get_hparams_from_file(config_path)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model,
).eval()
utils.load_checkpoint(checkpoint_path, net_g, None)
# 文本到语音合成
def text_to_speech(content):
stn_tst = text_to_sequence(content, hps.data.text_cleaners)
if hps.data.add_blank:
stn_tst = commons.intersperse(stn_tst, 0)
stn_tst = torch.LongTensor(stn_tst)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=0.667, noise_scale_w=0.8, length_scale=1)[0][0, 0].data.float().numpy()
return hps.data.sampling_rate, audio
# API 路由:文本转语音
@app.post("/synthesize")
def synthesize(request: TextRequest):
# 假设 text_to_speech 是生成音频的函数
sampling_rate, audio = text_to_speech(request.text)
# 将音频数据保存到 BytesIO 对象
wav_bytes = io.BytesIO()
write(wav_bytes, sampling_rate, (audio * 32767).astype(np.int16))
wav_bytes.seek(0) # 将指针移动到文件开头
# 将 WAV 文件编码为 Base64
audio_base64 = base64.b64encode(wav_bytes.read()).decode("utf-8")
return {"audio": audio_base64}
# 主函数
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="127.0.0.1", port=8000) |